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Fig. 1: Graphics built with GoFish. Left to right: A Sankey tree. A flower chart. A polar ribbon. A nested waffle. A scatterpie. 

Abstract—Visualization grammars from ggplot2 to Vega-Lite are based on the Grammar of Graphics (GoG), our most comprehensive 
formal theory of visualization. The GoG helped expand the expressive gamut of visualization by moving beyond fixed chart types 
and towards a design space of composable operators. Yet, the resultant design space has surprising limitations, inconsistencies, 
and cliffs — even seemingly simple charts like mosaics, waffles, and ribbons fall out of scope of most GoG implementations. To 
author such charts, visualization designers must either rely on overburdened grammar developers to implement purpose-built mark 
types (thus reintroducing the issues of typologies) or drop to lower-level frameworks. In response, we present GoFish: a declarative 
visualization grammar that formalizes Gestalt principles (e.g., uniform spacing, containment, and connection) that have heretofore 
been complected in GoG constructs. These graphical operators achieve greater expressive power than their predecessors by enabling 
recursive composition: they can be nested and overlapped arbitrarily. Through a diverse example gallery, we demonstrate how 
graphical operators free users to arrange shapes in many different ways while retaining the benefits of high-level grammars like 
scale resolution and coordinate transform management. Recursive composition naturally yields an infinite design space that blurs the 
boundary between an expressive, low-level grammar and a concise, high-level one. In doing so, we point towards an updated theory 
of visualization, one that is open to an innumerable space of graphic representations instead of limited to a fixed set of “good” designs. 

Index Terms—Grammar of Graphics, Graphical operators, Gestalt principles, Relational paradigm 

1 Introduction 

Leland Wilkinson’s Grammar of Graphics (GoG) is our most compre 
hensive theory of visualization. It underlies most modern visualization 
software from lowlevel toolkits [9, 39] to highlevel libraries [10, 38, 
47] and graphical editors [18, 37, 43, 51]. Its core promise is that, by 
breaking charts into pieces that can be combined and recombined, we 
can unlock a more expressive design space than rigid chart typologies. 
For example, with the GoG, a user can start with a simple bar chart, 
layer on text marks to label each bar, map data values to the fill and 
border colors of the bars, and change the coordinate transform from 
Cartesian to polar to produce a pie chart. 

While the GoG’s impact on visualization design is undeniable, it 
nevertheless presents some sharp expressivity cliffs. For example, 
consider the scatterpie plot (Fig. 1, right) — where pie charts are scat 
tered on a plane, usually in Cartesian space or on a cartographic map. 
While this type of chart may initially seem unusual, marine biologists 
frequently use these charts to visualize changes in plankton biodiver 
sity as each pie visualizes a water sample from a particular location 
[4]. Yet, although scatterpies combine two very common chart types, 
the GoG cannot express this composition. Fortunately, Guangchuang 
Yu, a bioinformatics professor, maintains the geom_scatterpie mark 
[53] for ggplot2 users — but this required dropping down to ggproto, 
ggplot2′s lowerlevel framework, and reintroduces the rigidity of chart 
typologies. For instance, if a biologist wished to scatter bar charts 
instead of pie charts, or to swap bland pie wedges for more visually 
evocative petals [41], they would be stuck once again. And, it’s not just 
scatterpies — other seemingly simple charts require custom marks, 
too. For example, waffle charts (which wrap squares in rows), mosaic 
charts (which encode data on both the width and height of stacked 
bars), and ribbon charts (which connect stacked bars with areas) all 
fall outside the GoG’s reach. If a custom mark isn’t available for 
their chart type, a designer must switch to a lowlevel framework like 
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ggproto or D3, giving up the benefits of higherlevel grammars like 
scale resolution and coordinate transform management. 

The GoG is also riddled with surprising inconsistencies. For exam 
ple, major GoG implementations do not agree on the structure of a 
stacked bar chart. In the original GoG, stacking occurs through a colli 
sion modifier, yet ggplot2 accomplishes it via position adjustments, 
VegaLite with an encoding channel, and Observable Plot through a 
data transform. These inconsistencies and expressivity cliffs suggest 
there is important structure that the GoG does not capture. 

In response, we present GoFish: a declarative visualization grammar 
that unlocks the compositional potential of the GoG by separating what 
marks look like from where and how they are arranged. To do so, we 
replace composite marks like dot and bar with primitive shapes like 
Ellipse and Rect, and to represent spatial arrangements, we intro 
duce graphical operators. These operators describe the structure of a 
graphic using primitives inspired by Gestalt grouping principles [46], 
which are key to how readers perceptually group elements [44, 54]. 
Formalizing them as operators both unlocks a larger expressive gamut 
and also affords a closer mapping between specification and visual 
output. For instance, with GoFish, a stacked bar chart is expressed by 
stacking rectangles, and a ribbon chart connects neighboring bars. 

We demonstrate how graphical operators enable smooth, consistent 
edits between visualizations by transforming a bar chart into a polar 
ribbon chart stepbystep (Sec. 3). Our approach to graphical operator 
composition is inspired by the Bluefish library’s formalism of Gestalt 
principles for diagramming [33]. The Bluefish model allows operators 
to be nested recursively in tree hierarchies. It also lets graphical 
operators share children with other operators (Sec. 3.3 & Sec. 4.3.1), 
allowing for complex, overlapping spatial arrangements. 

Through a diverse example gallery (Sec. 7), we demonstrate how 
GoFish blurs the boundary between a concise, highlevel grammar and 
an expressive, lowlevel framework — several examples in the gallery 
would previously require purposebuilt mark types, domainspecific 
visualization grammars, or lowerlevel frameworks to create. We also 
provide a qualitative comparison to Mascot (Sec. 8). Whereas Mascot 
draws inspiration from primitives in Adobe Illustrator, GoFish draws 
inspiration from the GoG. We compare and contrast these approaches. 
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GoFish’s graphical operators are part of a larger paradigm shift 
in both grammar and graphical perception research that extends the 
marksandchannels model with relational theories of visualization. 
Unlike the flat, combinatorial design space of marks and channels, 
GoFish’s hierarchical and adjacent composition presents a much 
larger, more structured design space that prompts us to reconsider the 
role of effectiveness in grammar design (Sec. 9). GoFish is an MIT 
licensed open source project available at gofish.graphics. 

2 Related Work 

2.1 Gestalt Principles in Visualization Theory 
Gestalt principles are a wellestablished part of our theories of graph 
ical perception. Larkin & Simon propose a relational model of both 
charts and diagrams based on Gestalt principles [24]. Pinker argues for 
the existence of a “visual description” mental model based on marks, 
channels, and Gestalt principles [32]. Zacks & Tversky argue for the 
importance of Gestalt principles to convey data relationships in graph 
ics [44, 45, 54], which has been followed up by Boger & Franconeri’s 
and Fygenson & Franconeri’s studies of bar chart arrangements [8, 
14]. Engelhardt & Richard propose a hierarchical theory of graphics 
that includes marks, channels, Gestalt principles like arrangement 
and linking, and coordinate transforms [11–13, 36]. These theories 
have deeply informed GoFish’s design, but whereas they are analytic, 
GoFish is a formal, generative theory of graphics. 

2.2 Grammars of More Graphics 
Lowlevel grammars and toolkits like Vega [39] and D3 [9] are 
extremely expressive, but in return do not provide much structure 
or inference. Users typically work directly with scales, coordinate 
transforms, and layouts that must be carefully sequenced to produce 
a meaningful specification. Encodable [52] is a library that allows 
users to create VegaLitestyle APIs for custom marks written in React 
or other JavaScript frameworks. It provides a simple interface for 
specifying encoding channels, sensible defaults, and scale inference. 
GoFish could adapt Encodable’s approach to make it easier for users 
to author custom marks. 

Prior visualization systems that formalize Gestalt principles explic 
itly are limited to specific classes of visualization. Domainspecific 
visualization grammars including GoTree for trees [25], Atom for unit 
visualizations [31], productplots for product plots including nested 
mosaics [49], and SetCoLa for nodelink graphs [20] all provide com 
positional operators for specific chart types. Many of these operators 
are inspired by Gestalt principles. For example, SetCoLa provides 
clustering constraints for spatial proximity and hull constraints for 
common region. By limiting themselves to specific chart types, these 
grammars are more tailored to their domains and more concise than 
GoFish. On the other hand, switching between grammars presents 
large complexity cliffs, as a user must reorient themselves to a new set 
of abstractions. GoFish’s operators provide a consistent representation 
across a large class of graphics. 

GoFish is most similar to the language underlying Charticulator [34]
and to the Mascot (formerly Atlas) grammar underlying Data Illustra 
tor [26–28]. Both systems use shapes and composition abstractions like 
operators, layouts, and constraints to achieve impressive expressive 
gamuts. The biggest difference between GoFish and these systems lies 
in their design goals. Charticulator’s representation and Mascot were 
initially designed to support direct manipulation chart editors whereas 
GoFish is designed to be authored directly, similar to the GoG. As 
a result, Charticulator’s representation cannot be used outside of the 
system, and Mascot provides a procedural API with operators inspired 
by Adobe Illustrator. GoFish, on the other hand, draws inspiration most 
directly from Bertin and Wilkinson as well as Zacks’s and Tversky’s 
work on the role of Gestalt grouping principles in charts [44, 45, 54]. 
We unpack these implications in Sec. 8. 

3 GoFish by Example: Building a Polar Ribbon Chart 

We demonstrate GoFish by example, incrementally transforming a bar 
chart into a stacked bar chart, a ribbon chart, and finally a polar ribbon 
chart. This example touches on the main ideas of GoFish we’ll see 
throughout the rest of the paper. For the first few examples, we will 
compare to Observable Plot since both GoFish and Observable Plot 
are embedded in JavaScript. While some details about stacking differ 
between GoG grammars, the key points generalize to all of them. We 

encourage you to pick your favorite one and follow along! The dataset 
we’re using, sf (short for seafood), is the counts of different fish 
species in six lakes. The lakes are all connected by the same river. 
We want to understand how the total population of fish varies among 
the lakes as well as the variation of each species. 

3.1 Bar Chart: Breaking Marks Into Shapes, Data, and 
Graphical Operators 

1 Consider Fig. 2. We might start with a bar chart to get a sense of the 
count in each lake. GoG libraries use marks and channels to map data 
tables to collections of shapes. In Observable Plot, we might choose 
the barY mark and map the lake field to the x channel and the count 
field to the y channel to set the heights of the bars. By contrast, GoFish 
splits the barY mark into three pieces: StackX, For, and Rect. The 
For function maps over the dataset, calling the Rect shape function six 
times to produce six rectangles. The StackX graphical operator evenly 
spaces these shapes horizontally and aligns them vertically. 

1 Bar Chart 

Observable Plot 

barY(sf, {x: "lake", y: "count"}) 

GoFish 

StackX({spacing: 8}, 

For(groupBy(sf, "lake"), (d) => 

Rect({w: 32, h: v(sumBy(d, "count"))}))) 

2 Stacked Bar Chart 

Observable Plot 

barY(seafood, {x: "lake", y: "count", fill: "species"}) 

GoFish 

StackX({spacing: 8}, 

For(groupBy(sf, "lake"), (lake) => 

StackY({spacing: 0}, 

For(lake, (d) => 

Rect({w: 32, h: v(d.count), fill: v(d.species)}))))) 

Fig. 2: In the GoG, marks like barY are primitives and vertical stacks are 
applied implicitly by color channels. GoFish instead uses explicit Stack 
graphical operators, revealing the spatial structure of the visualizations. 

Let’s take a closer look at the arguments to these functions. As with all 
graphical operators in GoFish, StackX takes some aesthetic properties 
and an array of child elements and produces a new element. In this 
case, we have specified a spacing of 8 pixels between the bars. The 
groupBy data transform in the For function creates an array of tuples 
for each lake. Like StackX’s spacing, Rect’s width is an aesthetic 
value of 32 pixels. However, its height is a datadriven value repre 
senting the sum of the counts of every fish species in the lake. We use 
GoFish’s v function to tell the system that the height parameter is a 
piece of data that must be scaled, not an aesthetic value. 

3.2 Stacked Bar Chart: Nesting Graphical Operators 

2 In most GoG libraries, bar stacking happens by default when the 
user specifies a color channel. By contrast, in GoFish we explicitly 
create a vertical stack by adding a StackY graphical operator inside 
the StackX. We adjust the h channel to encode the count of a single 
species and add a fill encoding to complete the stacked bar chart. 
This specification is more verbose than one in the GoG, but its 
organizational structure explicitly reflects the visual structure of the 
chart more directly. A stacked bar chart comprises a horizontal stack 
of vertically stacked rectangles. This onetoone mapping means that 
changes to a GoFish specification closely reflect changes to the result 
ing visualization. Figure 3 shows two such examples. 

3 A grouped bar chart is a stacked bar chart where the bars are 
stacked horizontally instead of vertically. But the GoG doesn’t see it 
that way. To switch from a stacked to a grouped bar chart in Observable 
Plot, a user changes the x encoding from “lake” to “species” and uses 
“lake” for the horizontal facet encoding, fx. The meaning of the x 
encoding has apparently switched from the position of the bar stack 
to the position of each individual bar, and the user has to invoke the 
concept of faceting, which wasn’t necessary for vertical stacking. By 
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3 Grouped Bar Chart 

Observable Plot 

barY(sf, {x: "species", y: "count", fill: "species", fx: "lake"}) 

GoFish 

StackX({spacing: 12}, 
For(groupBy(sf, "lake"), (lake) => 

StackX({spacing: 1}, 

For(lake, (d) => 

Rect({w: 8, h: v(d.count), fill: v(d.species)}))))) 

4 Waffle Chart 

Observable Plot 

waffleY(sf, {x: "lake", y: "count", fill: "species"}) 

GoFish 

StackX({spacing: 8}, 
For(groupBy(sf, "lake"), (lake) => 

StackY({spacing: 2, alignment: "start"}, 

For(lake.flatMap((d) => Array(d.count).fill(d)).chunk(3), 
(chunk) => 

StackX({spacing: 2}, 

For(chunk, (d) => 

Rect({w: 8, h: 8, fill: v(d.species)}))))))) 

Fig. 3: Variations of a stacked bar chart. While GoFish is more verbose, 
it’s more consistent and composable. Notice Stacks can nest arbitrarily. 

contrast, in GoFish, the user switches the StackY to a StackX and 
adjusts the aesthetic w and spacing values. 

4 A waffle chart is like a stacked bar chart, except it vertically 
stacks rows of squares instead of individual Rects. Expressing this 
chart requires a third level of stacking. Unfortunately, in the GoG 
we are already out of channels and facets! Observable Plot provides 
a custom mark, waffleY, that is written using D3 and Plot’s internal 
APIs. In contrast, GoFish’s graphical operators can nest arbitrarily, so 
we can add another Stack just as before. To turn a stacked bar chart 
into a waffle chart in GoFish, we add a data transform to produce 
species.count copies of each species tuple and chunk them into 
groups of 3. We then make a StackX of square Rects for each chunk. 

3.3 Ribbon Chart: Overlapping Graphical Operators 

5 To highlight the changes in species counts between lakes, we can 
sort the species by count in each lake and turn our stacked bar chart 
into a ribbon chart. The ribbon chart connects the species rectangles 
across each lake with intervals. Like waffle charts, ribbon charts can’t 
be decomposed into basic GoG marks and channels, so they are only 
supported by GoG libraries as custom marks. In GoFish, we can extend 
our stacked bar chart specification to turn it into a ribbon chart. Figure 4 
(left) shows a ribbon chart and its GoFish specification. To connect the 
bars, we first give each Rect shape a name (line 8), which will allow 
us to refer to it later. Next, we create a layer using the Frame operator 
(line 1), which allows us to place multiple shapes in the same space. To 
place the ribbons, we use the ConnectX operator, which horizontally 

connects its children with paths (line 10). Since there is one ribbon per 
species, we make one ConnectX per species using the For function 
and a data transform on line 9. Notice on line 12 that ConnectX’s 
children are Refs, not Rects. A Ref creates a declarative reference 
that points to an existing element. This allows ConnectX to connect 
the existing Rect shapes. Refs are powerful as they let us overlap 
graphical operators. That is, they allow us to use the same shape in two 
different spatial arrangements without the use of additional concepts 
like constraints (Sec. 4.3.1). 

3.4 Polar Ribbon Chart: Transforming Shapes and GraphiE 
cal Operators 

6 To turn our ribbon chart into a polar ribbon chart, we add the Polar 
coordinate transform to our Frame, adjust some aesthetic values, and 
switch the StackX to "center" mode (line 3). Unlike the default 
spacing mode, a Stack in "center" mode evenly spaces its children’s 
centers rather than evenly spacing them edgetoedge. This ensures the 
bars are evenly distributed along the theta axis. 

To summarize, in this section we saw how GoFish trades some of 
the concision of conventional highlevel GoG systems to achieve a 
significantly more consistent and expressive language. The structure 
of a GoFish specification closely mirrors the structure of the resulting 
graphic. Despite its expressiveness, GoFish still handles scale resolu 
tion and coordinate transforms declaratively like the original GoG. 

4 The GoFish Grammar 

GoFish is a visualization grammar embedded in TypeScript compris 
ing a standard library of shapes, data transforms, graphical operators, 
and coordinate transforms. Additionally, GoFish has a helper for en 
coding channel specification, v, which tags values as data to be scaled, 
a Frame operator for layering elements and applying coordinate trans 
forms, and a color object that provides categorical color palettes. 

Fig.  5: GoFish is organized around three spaces: Data, Underlying, 
and Display. These correspond roughly to frame, underlying space, and 
display space in the original GoG [50, p. 359]. 

Figure 5 shows the three conceptual spaces that govern the behavior 
of GoFish: Data, Underlying, and Display space. These spaces 
were inspired by, but do not directly follow, the GoG’s spaces: frame, 
underlying, and display [50, p. 359]. They help us keep track of 
values inside the system and which operations can be applied to them. 
Roughly, GoFish takes Data values assigned to shape channels and 
scales them to Underlying space, then graphical operators arrange 
values in Underlying space, and finally coordinate transforms map 
Underlying values to Display space. 

5 Ribbon Chart 

1 Frame([ 

2 StackX({spacing: 64}, 

3 For(groupBy(sf, "lake"), (lake) => 

4 StackY({spacing: 0}, 

5 For(sortBy(lake, "count"), (d) => 

6 Rect({w: 16, h: v(d.count), 

7            fill: v(d.species)}) 

8       .name(`${d.lake}-${d.species}`))))), 

9 For(groupBy(sf, "species"), (species) => 

10 ConnectX({opacity: 0.8}, 
11 For(species, (d) => 

12 Ref(`${d.lake}-${d.species}`))))]) 

6 Polar Ribbon Chart 

1 Frame({coord: Polar()}, [ 

2 StackX({x: -Math.PI / 2, y: 50, 

3   spacing: 2 * Math.PI / 6, mode: "center"}, 

4 For(groupBy(sf, "lake"), (lake) => 

5 StackY({spacing: 0}, 

6 For(sortBy(lake, "count"), (d) => 

7 Rect({w: 0.1, h: v(d.count), 

8            fill: v(d.species)}) 

9        .name(`${d.lake}-${d.species}`)))) 

10  ), 

11 For(groupBy(sf, "species"), (species) => 

12 ConnectX({opacity: 0.8}, 
13 For(species, (d) => 

14 Ref(`${d.lake}-${d.species}`))))]) 

Fig. 4: GoFish ribbon and polar ribbon charts. We add the ConnectX operator to connect the rectangles. Its children are Refs that reference the Rect 
shapes we created earlier. Frame allows us to layer shapes and operators. We add a Polar coordinate transform to the Frame and adjust StackX’s 
and Rect’s parameters to turn our ribbon chart into a polar ribbon chart. 
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shapes 
shape(channels: Channels) => Elem 
‣ Rect(): a rectangle shape
‣ Ellipse(): an SVG ellipse
‣ Ref(select: string): a declarative reference to another shape 

data transforms and operators 
groupBy(data: T[], key: string) => Record<string, T> 
sortBy(data: T[], key: string) => T[] 
sumBy(data: T[], key: string) => number 

For(data: Coll<T>, cb: (d: T, i: Key) => Elem) => Elem[] 
v(datum: any) => DataValue 

graphical operators 
graphicalOp(aes: Aesthetics, children: Elem[]) => Elem 
‣ Stack(): stack elements horizontally or vertically
‣ Connect(): connect elements with an interval 
‣ Enclose(): enclose elements in a rectangle 
Frame({ coord: Coord }, children: Elem[]) => Elem, 

coordinate transforms 
coord() => Coord 
‣ Linear(): (𝑥, 𝑦) ↦ (𝑥, 𝑦)
‣ Polar(): (𝜃, 𝑟) ↦ (𝑟 cos 𝜃, 𝑟 sin 𝜃)
‣ Wavy(): (𝑥, 𝑦) ↦ (𝑥 + 5 · sin( 𝑦 

10), 𝑦 + 5 · sin( 𝑥 
10)) 

type definitions 
type AestheticLit := any 
type ChannelValue := AestheticLit | DataValue 
type Aesthetics := { [key: string]: AestheticLit } 
type Channels := { [key: string]: ChannelValue } 
type Coll<T> := T[] | Record<string, T> 

Listing  1: GoFish comprises four main concepts: shapes, data trans-
forms and operators, graphical operators, and coordinate transforms. 
Frame is used to layer elements and apply coordinate transforms. v 
distinguishes data from aesthetic literals. Stack and Connect have X and 
Y variants that specialize the original operators to a specific direction. 

4.1 Shapes 
A GoFish shape is a basic graphical element like a rectangle or ellipse. 
Shapes have spatial channels: x, y, cx, cy, x2, y2, w, h. They also have 
properties corresponding to SVG attributes such as fill, stroke, and 
opacity. In addition to basic elements, a shape can be a Ref, which is 
a declarative reference to another basic graphic element (Sec. 4.3.1). 

4.2 Data Transforms 
We reexport Lodash’s groupBy, sortBy, and sumBy transforms so 
that most charts can be made without importing a separate library. 
However, GoFish users can use any JS data transform library. 

The For operator maps over an object, array, or Lodash collection, 
calling the cb function on each entry. This operator is inspired by 
SolidJS’s For component. Although For subsumes Array.map, we 
use it only when returning GoFish Elems. We have found that using 
For instead of .map in these cases makes GoFish specifications clearer, 
because it separates data transforms from element creation code. 

The v function. Inspired by VegaLite and SwiftCharts, GoFish 
uses the v function to distinguish between data values, which must be 
scaled, and aesthetic literals. Similar to SwiftCharts, values must be 
explicitly tagged because GoFish specs are made of individual shapes 
rather than mark functions that generate shapes using field accesses 
like ggplot2′s and Observable Plot’s primitives. 

4.3 Graphical Operators 
GoFish’s graphical operators are heavily inspired by Bluefish’s rela 
tions, which operationalize Gestalt principles for diagramming [33]. A 
graphical operator takes some aesthetic properties and child elements 
as input, and produces a new element as its output. A child element of 
a graphical operator may be a primitive shape or an element produced 
by another graphical operator. The resulting graphical element is an 
arrangement of the operator’s child elements as well as any new shapes 
the operator may have drawn. GoFish provides three main graphical 
operators — Stack, Connect, and Enclose — and a supporting oper 
ator, Frame, that groups elements and applies coordinate transforms. 

Graphical operators are very general. They can run arbitrary layout 
code as long as they are immutable (Sec. 4.3.2) and depend only on 
their input parameters, some limited parent context information, and 
their children’s bounding boxes. To decide which operators to imple 
ment, we first aimed to support common chart types like scatter plots, 
line charts, and bar charts. To design operators that could describe 
the perceptual structure of these charts, we drew inspiration from 
existing research in cognitive and perceptual psychology [32, 44, 45, 
54] as well as descriptive theories of graphic structure [13, 24, 33, 
35]. This literature emphasizes the structural role Gestalt grouping 
principles play in graphics. We ultimately settled on the Gestalt prin 
ciples of uniform spacing (Stack), element connectedness (Connect), 
and common region (Enclose) as GoFish’s initial set of graphical 
operators. By keeping this set small, we demonstrate that GoFish’s 
expressive power is due to its novel compositional abilities rather than 
bespoke algorithmic layouts (Sec. 7). 

The Stack operator evenly spaces its children on its primary axis 
and aligns them on the other unless they have already set their own po 
sitions with encoding channels. Stack has two modes: "center" and 
"edge". "center" stacking is similar to D3′s ordinal pointScale, 
which equally spaces points. "center" equally spaces its children’s 
centers. "edge" stacking is similar to D3′s ordinal bandScale, which 
creates equally sized bands with gaps between them. However, unlike 
bandScale, Stacks children do not need to be equally sized. Stack 
defaults to "edge" stacking. 

The Connect operator connects elements with a path element. 
This operator replaces the typical role of a line or area mark in a 
GoG system, instead creating an explicit connection between existing 
shapes. Similar to Stack, the Connect operator has "edge" and 
"center" modes where it connects the edges or the centers of its 
children, respectively. Connect also defaults to "edge" mode. 

The Enclose operator contains its children in a common region 
using a rectangle. Enclose takes padding and rx and ry parameters 
to adjust its appearance. 

The Frame operator overlays its children and optionally applies a 
coordinate transform. When used in conjunction with the Ref shape, 
Frame allows graphical operators to share children with other graph 
ical operators (Sec. 4.3.1). Notice that GoFish doesn’t have a facet 
operator. This is because a Stack operator whose children are Frames 
acts as a faceting operator. 

Notice graphical operators are separate from data transforms. While 
spatial composition is sometimes combined with data transforms [31], 
we chose to keep them separate in GoFish to allow users to write data 
transforms in the host language. This makes it easier to write more 
bespoke data transforms, such as the one for waffle charts in Fig. 2. 

4.3.1 Overlapping Graphical Operators with Ref 

As we saw in Sec. 3.3, graphical operators can share children (i.e., 
overlap) using the Ref shape. Overlapping graphical operators is espe 
cially useful when Connecting shapes that have already been placed 
by Stacks. None, some, or all of an operator’s children may be Refs. A 
Ref works like a declarative query selector. Auser can reference a mark 
by its name, which is a globally defined string like an HTML ID. Future 
work may explore more complex query selectors, perhaps inspired 
by Cicero’s specifiers [22] or Atlas’s find [27]. We considered using 
JavaScript’s own variable bindings instead of a separate Ref shape, 
since variable definitions allow values to be reused in code. But this 
makes specification authoring more viscous, because a user must hoist 
a node out of their specification in order to reuse it. It also obscures 
the correspondence between the hierarchical structure of a GoFish 
specification and the hierarchical structure of the resulting graphic. 

Ref reduces the number of concepts required to express common 
spatial arrangements. Systems like Charticulator [34] and Mascot [26]
introduce constraints, links, and layouts as separate concepts. Con 
straints can refer to elements across a specification, but are limited to 
simple relationships and cannot render shapes. Links can also connect 
elements across a spec, but can only draw shapes, not position children. 
Layouts cannot be overlapped, but can express complex relationships 
and draw shapes. Graphical operators unify these ideas with Ref. 
Because an operator cannot tell if its children are normal graphical 
elements or Refs, a graphical operator can be written like a layout 
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— using arbitrary code and drawing shapes — while also overlapping 
with other operators like a constraint or link. 

4.3.2 Graphical Operators Are Immutable 

Graphical operators cannot mutate the size or position of an element if 
it has already been set. This ensures the declarative nature of a GoFish 
specification. If a Stack exists in the spec, its children are stacked. If 
there’s a Connect, then its children are connected. This property arises 
naturally in grammars with recursive composition but no overlaps, 
such as Atom or productplots, because child sizes and positions depend 
only on their arguments, their own children, and their immediate 
parent. However, with overlapping operators we need to take special 
care that other operators don’t accidentally mutate an existing value. To 
that end, we adopt Bluefish’s dimension ownership model [33]. When 
a shape or operator writes to a size or position field, that field is owned 
by the writer and can’t be modified by anything else. 

4.4 Coordinate Transforms 
The coordinate transforms in GoFish’s standard library are Linear, 
Polar, and Wavy. See Lst. 1 for their formal definitions. In addition 
to these builtin transforms, GoFish supports userdefined ones. Coor 
dinate transforms are similar to graphical operators in that they both 
manipulate arrangements of graphical elements. But they behave 
slightly differently. Table 1 summarizes those differences. 

Table 1: Graphical operators vs. coordinate transforms 

Characteristic Graphical Operators Coordinate Transforms 

arrangement kind discrete arrangements continuous arrangements 

layout scope affects direct children affects all descendants 

order sensitivity depends on child order independent of child order 

Intuitively, a coordinate transform provides the “substrate” for shapes, 
while graphical operators adjust the sizes and positions of shapes 
within this substrate. As a result, graphical operators are wellsuited 
to discrete arrangements while coordinate transforms are better for 
continuous ones. Graphical operators arrange only their direct children 
(which may be primitive shapes or composite elements) whereas coor 
dinate transforms ignore element boundaries and affect all descendant 
primitive shapes.¹ Child ordering is important to a graphical operator 
— for example Stack’s arrangement reflects its child ordering — but 
coordinate transforms apply to all their descendants independently. 

5 Untangling GoG Marks from Operators and Coords 

The central observation driving the design of GoFish is that GoG 
marks entangle shapes, spatial arrangements, and coordinate trans 
forms. Though the GoG moved away from chart typologies towards 
more composable pieces, we identify two entanglements that create 
mark typologies. First, marks are complected with spatial arrange 
ments, which results in large taxonomies of marks — one per arrange 
ment. Second, marks are complected with their dimension (0D, 1D, or 
2D), which creates yet another set of taxonomies. GoFish disentangles 
marks from spatial arrangements by introducing graphical operators 
for arrangements and reducing marks to primitive shapes (Sec. 5.1). 
GoFish disentangles shapes from dimensions by adapting Bertin’s 
notion of shape embedding [5, 6], inferring a shape’s dimension 
from its encoding channels and the graphical operators that arrange 
it (Sec. 5.2). Untangling these concepts is what makes GoFish more 
expressive than the GoG. 

5.1 GoG Marks Are Spatial Arrangements of Shapes 
GoG systems implicitly define marks as collections of individual 
shapes laid out in space. For example, a dot mark is collection of 
circles positioned with datadriven x and y coordinates. Similarly, a 
bar mark is a collection of rectangles with datadriven heights that are 
evenly spaced on the xaxis and vertically aligned on the yaxis. This 
tightly couples spatial arrangements to mark types. As a result, adding 
a new organizational strategy, like arranging marks in waffles or trees, 
requires adding a new mark. To make matters worse, since GoG marks 
are typically named after the lowlevel shapes they use, not their spatial 

¹We also transform shapes produced by operators like Connect and Enclose. 

arrangements, GoG systems accumulate similarsounding names for 
marks that use the same shapes but vary their spatial arrangements. 
For example, VegaLite uses rect for heatmaps, bar for bar charts, 
square for scatter plots, and arc for polarmapped rectangles. It can 
be hard to know which mark type to use in which situation, because 
these mark names lack a clear organizational structure. 

In contrast to the GoG, GoFish shapes formalize the notion of mark 
developed by Bertin [5, 6]. Though he never defines it precisely, we 
can infer from context that Bertin uses “mark” to mean a basic graph 
ical element like a point or line segment, similar to its use in the visual 
arts and drafting, rather than a collection of elements. By separating 
shapes from their arrangements, we allow users to compose them more 
flexibly and reuse the same arrangement with a different shape. For 
example, a GoFish user can easily turn a spec for a bar chart into a spec 
for a bar chart of ellipses by keeping the Stack fixed and changing 
the Rect shape to an Ellipse. This separation also enables recursive 
composition. Abar mark cannot be recursively composed with another 
bar, but Stacks can be easily nested to create a grouped bar chart. 

Although Wilkinson drew heavily from Bertin, he didn’t formalize 
Bertin’s notion of mark directly. Wilkinson instead introduced “geo 
metric graphs” [50, p. 155], functions that map data to collections of 
basic graphical elements. Though he took care to explain that these 
graphs are distinct from Bertin’s marks, they are still named after the 
shapes they produce, like point and line. This ambiguity has grown 
with each new implementation of the GoG. In ggplot2, “geometric 
graph” became “geom” [47], a “geometrical object that a plot uses to 
represent data” [48], which could equally describe a lowlevel shape or 
a geometric graph. VegaLite uses “mark type” to refer both to kinds of 
lowlevel shape and to the geometric graphs used to produce them [38]. 
Observable Plot merges “mark” and “mark type” completely, saying 
both that marks “are geometric shapes” and that, e.g., “the dot mark 
draws circles” [10]. 

GoFish resolves the conceptual ambiguity between Bertin’s and 
Wilkinson’s definitions of “mark” by breaking up Wilkinson’s concept 
into its constituent pieces. Wilkinson marks are compositions of graph 
ical operators, data transforms, and Bertin marks (i.e., GoFish shapes). 

5.2 Shapes Can Be Embedded in Underlying Space 
In conventional GoG systems, each mark has a fixed dimension: a 
dot is 0D; a path is 1D; a polygon is 2D [47]. Dimensions control 
how marks can be arranged by collision modifiers and manipulated by 
coordinate transforms. For example, a 0D mark is only translated, not 
scaled or warped, by a coordinate transform. This seems reasonable 
at first, but tightly coupling marks and their dimensions is limiting in 
practice. For example, in ggplot2, geom_text is 0D. As a result, it can’t 
be rotated and stretched by a coordinate transform, making it difficult 
to use for labels in polar space. 

Similar to different spatial arrangements, GoG systems provide 
different marks for zero, one, and twodimensional versions of the 
same shape. These marks have confusing names, too. In ggplot2, for 
example, geom_tile, geom_segment, and geom_rect represent 0D, 
1D, and 2D rectangles, respectively. Since these mark names and be 
haviors overlap, especially in Cartesian space, picking the right mark 
type is subtle and errorprone. 

Rather than a shape like Rect having a fixed dimension, in GoFish 
we determine whether a shape’s width and/or height are embedded in 
Underlying space — and thus warped by a coordinate transform — 
or mapped directly to Display space. A shape is 0, 1, or 2dimen 
sional depending on whether zero, one, or both of its width and height 
are embedded. Shape embedding is important, because embedded 
widths and heights are warped by coordinate transforms. For example, 
consider Fig. 6 (left). When a Rect is used in a polar scatter plot, it 
needs to be zerodimensional so that the coordinate transform only 
translates the shape and doesn’t warp it. But in a polar bar chart, the 
Rects must be onedimensional so that they are rotated to the right 
positions and their widths remain fixed. Finally, in a pie chart, the Rect 
must be treated as twodimensional to be warped into a wedge shape. 

In GoFish, a shape’s dimension is determined by its width and height 
encodings as well as any graphical operators that may read or write 
the width or height of the shape. Figure 6 (right) shows the embedding 
rules with some abstract examples. First, if the width (resp. height) 
of a shape is a datadriven value, then GoFish considers the width 
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Shape Dimension Channel Embedding Rules Operator Embedding Rules 

Fig. 6: (left) 0D, 1D, and 2D embeddings of a rectangle and how they are transformed by a polar space. (right) Embedding rules for shape channels 
and graphical operators. We use these rules to automatically infer the dimension of each shape. 

(resp. height) of the shape to be embedded in the Underlying space. 
This means it is subject to manipulation by the coordinate transform 
as shown in Fig. 6 (left). For example, shapes in a scatter plot do not 
have datadriven sizes, so they are not embedded and thus not warped 
by a coordinate transform. But Rects in a bar chart have datadriven 
heights, so they do get warped. 

To maintain the declarative nature of the specification, a graphical 
operator cannot “deembed” a shape’s dimension if it has already been 
embedded. However, a graphical operator may further embed a shape. 
For example, the StackX operator reads and writes the horizontal 
edges of its children, and in doing so it embeds the widths of its 
children in Underlying space. On the other hand, if StackX is used 
in "center" mode, then it only reads and writes the horizontal centers 
of each child, so it does not embed their widths. 

Graphical operators participate in shape embedding so that their 
spatial arrangements will be preserved by coordinate transformations. 
For example, consider the StackXs in Fig. 6 (right). If Rects are 
spaced horizontally edgetoedge, then we’d expect this spacing to 
be preserved by a polar transformation. To do so, we have to embed 
the width of each Rect. If their widths were not embedded, the 
Rects would appear as points to the Underlying space. The spacing 
between these points is larger than the edgetoedge spacing between 
the Rects, and so the polartransformed Rects would appear farther 
apart from each other than they should be. 

While this approach to shape embedding covers many common 
cases, there are some it does not currently support. For example, 
although a bubble chart is a scatter plot with datadriven radii, the 
widths and heights of the circles should not be embedded, since they 
are typically a different kind of data than the position data. Similarly, 
in a dual axis chart, the Underlying space has a more complicated 
structure that is just beyond our current approach to shape embedding. 
We suspect that a more strongly typed encoding model incorporating 
units of measure could support these more challenging cases. 

6 Implementation 

GoFish is based heavily on Bluefish, a diagramming library [33]. We 
briefly describe graphical operator layout (Sec. 6.2), but it mostly 
follows the implementation in Bluefish. However, Bluefish only 
deals with Underlying space. To adapt it to statistical graphics, we 
had to add recursive scale resolution (Sec. 6.1) and coordinate trans 
forms (Sec. 6.3). 

Like Bluefish, GoFish’s primitives produce a treestructured scene 
graph consisting of standard nodes and ref nodes that act as proxies 
for the nodes they reference. GoFish’s runtime extends the UI layout 
architecture approach of local constraint propagation. After resolving 
Ref selections, we perform three passes over the scenegraph: resolve 
size scales (Sec. 6.1); layout shapes in Underlying space using 
graphical operators (Sec. 6.2); and apply coordinate transforms and 
aesthetic properties to map shapes to Display space (Sec. 6.3). 

6.1 Recursive Size Scale Resolution 
Scale resolution is an important part of GoG systems, because it 
means that designers don’t have to specify scales manually most of 
the time. Scales are often merged across subplots in a facet or among 
marks overlaid on a shared frame. Custom layouts like d3-tree and 
d3-sankey also perform scale resolution internally. However, existing 

approaches to scale resolution assume that facets or stacks can nest 
only finitely many times. For example, facets in VegaLite and stack 
data transforms in Observable Plot are not nestable. In GoFish, we 
place no such restrictions on the Stack operator. But this makes scale 
resolution much harder. 

While some scales like colors and positions are easy to resolve with 
arbitrarily nested operators, size scales are particularly challenging, 
because they often depend on the output canvas size, data values, and 
aesthetic values. For example, suppose we have a collection of data, 
𝑑𝑖𝑗 , that we want to visualize in a stacked bar chart. To compute the 
height scale factor, sf, that we will apply to each 𝑑𝑖𝑗 , we need to solve 
the following equation. Given a frame height, height, and an inter 
bar spacing of spacing pixels, 

height = max
𝑖 

(∑
𝑗 

(sf · 𝑑𝑖𝑗 + spacing) − spacing) 

Simple compositions like these can be solved in closed form, but this 
is not true in general. To resolve scales for arbitrary compositions of 
operators, we first observe that the formulas that appear on the right 
hand side are always monotonically increasing in sf. That is, when sf 
increases, the height increases, too. As a result, we can binary search 
on sf to find a value that produces the desired output height. This 
approach is linear in the size of the scenegraph, because we do 𝑂(1) 
work at each node to compute the height for a given scale factor. The 
running time thus depends on finding good candidate bounds on the 
search to limit the number of iterations. In practice we can provide 
reasonable estimates using information about the size of the visualiza 
tion and the data collection. 

6.2 Graphical Operator Layout 
In contrast to other systems like Charticulator [34] that use linear 
programming, GoFish relies on parentchild local propagation layout 
like Bluefish [33]. Because of its simplicity, this architecture is very 
expressive, used by all major UI layout engines (including web, desk 
top, and mobile), and performs only constant work for each node in 
the scenegraph. In parentchild local propagation, a parent component 
sends each of its children a width and height they want the child to be. 
The child then performs its own layout before reporting its width and 
height (as well as its position if it was set during the child’s layout). 
In addition to this conventional information, we also pass computed 
scale factors to children, which they may use to compute their size. 

6.3 Coordinate Transform Layout and Rendering 
During layout, a coordinate transform flattens its subtree hierarchy 
completely, accumulating nested transforms, erasing graphical opera 
tors, and producing a flat list of child shapes to be rendered. During 
rendering, each shape uses its coordinate transform context, and infor 
mation about which dimensions are embedded, to determine how to 
render to the screen. We use SVG as our rendering target due to its 
simplicity and ease of debugging, but since all layout and DOM output 
is controlled by GoFish, we could in principle target other backends. 

7 Example Gallery 

GoFish provides a very expressive, yet structured design space. To test 
the limits of GoFish’s composition, we constructed an example gallery 
of 30 graphics, which can be found at gofish.graphics. We highlight 
two clusters of examples we found particularly interesting. First, we 
replicated several highly nested charts that previously required either 
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Nested and Tree-Like Charts 

Fig.  7: Different visualizations of the Titanic dataset. A nested waffle 
chart using Enclose for borders, similar to unit visualizations produced 
by the Atom grammar [31]. A nested mosaic based on Hofmann’s [21] 
and those produced by productplots [49]. An icicle chart. A Sankey tree. 

lowlevel toolkits or specialized grammars to construct: nested waf 
fles, nested mosaics, icicles, and Sankey trees (Sec. 7.1). By separating 
shapes and graphical operators, GoFish allows users to combine shapes 
and spatial arrangements independently. Second, we demonstrate how 
GoFish’s expressiveness gives users more ability to express their 
personality. By changing shapes, we can switch the style of a visual 
ization from scientific, to artistic, to whimsical (Sec. 7.2). Finally, we 
summarize the limitations of GoFish we discovered through building 
our examples (Sec. 7.3). 

7.1 Waffles to Nested Mosaics, Icicles to NodeELink Trees 
To push the limits of GoFish’s compositional abilities, we recreate 
several highly nested charts to visualize the dataset of passengers who 
perished in the Titanic disaster (Fig. 7). Nested waffle and nested 
mosaic plots are very similar, but currently require different special 
ized grammars to construct. For example, the Atom grammar supports 
nested waffle charts [31] and productplots supports nested mosaics, but 
neither grammar supports the other kind of chart. In GoFish, similar 
to our switch from a stacked bar chart to a waffle chart (Sec. 3.2), the 
specifications of these two charts are very similar. We create nested 
Stacks to represent successive groupings by “class” and “sex.” The 
nested waffle bottoms out as a StackY of a collection of StackXs of 
Ellipses surrounded by an Enclose. The nested mosaic bottoms out 
as a StackY of Rects. The widths and heights of the nested mosaic 
chart are determined by normalizing survival counts as detailed by 
Hofmann [21]. The waffle chart uses a normalized survival count to 
determine the number of Ellipses per StackX. 

Tree visualizations are supported by specialized grammars like 
GoTree [25]. We recreate some trees in GoFish. The icicle chart 
is created similarly to the nested mosaic chart by nesting StackXs 
and StackYs. However, in this chart, each StackX consists of a 
Rect representing the sum of a particular group and the remaining 
subvisualization to the right of that Rect. To turn the icicle chart 
into a Sankey tree, we add horizontal and vertical spacing to the 
Stacks, split each Rect into a StackY of Rects, and then connect 
neighboring Rects with ConnectX operators. A Sankey tree is not 
representable in GoTree, because it provides only linelike connectors, 
not intervals like ConnectX. With explicit graphical operators, GoFish 
makes connections between these related chart types more apparent. 
However, the tradeoff is that GoFish specifications are more verbose 
than restricted, domainspecific grammars. 

7.2 Scatter Pies and Flowers and Balloons… Oh My! 
Scatterpies are often considered ineffective, a balloon chart may be 
cast aside as unserious, yet the flower chart is heralded as an impactful 
data art piece [41]. Despite the differences in our attitudes towards 
these charts, their specifications are very similar. Conventional gram 
mars often aim to avoid charts the community deems ineffective, 
like scatterpies, but at the same time they hope to support impactful 
charts like the flowers. Not only is effectiveness contextspecific, as 
evidenced by the popularity of scatterpies among marine biologists, 
but we argue that it is not possible to build a compositional grammar 
like the GoG or GoFish that supports one while rejecting the other. 

Figure 8 provides images and GoFish specifications for a scatterpie, 
a flower chart, and a balloon chart. To create a scatterpie, we create an 
outer Frame that contains one inner Frame per sample in our dataset. 
This inner Frame Polar maps a horizontal stack of rectangles to create 

Scatterpie 

Frame( 

For(data, (sample, i) => 

Frame({x: sample.x, y: sample.y, coord: Polar()}, [ 

StackX({h: sumBy(sample.collection, "count"), 
spacing: 0}, 

For(sample.collection, (d, i) => 

Rect({w: v(d.count), fill: v(i)})))]))) 

Flower Chart 

StackX( 

For(data, (sample, i=> 

Frame([ 

Rect({w: 2, h: sample.y, fill: color.green[5]}), 

Frame({y: sample.y, coord: Polar()},[ 

StackX({h: sumBy(sample.collection, "count"), 
spacing: 0}, 

For(sample.collection, (d, i) => 

Petal({w: v(d.count), fill: v(i)})))])]))) 

Balloon Chart 

Frame({coord: Wavy()}, 

StackX( 

For(data, (sample, i) => 

Frame({x: sample.x, y: sample.y}, [ 

Rect({w: 1, h: sample.y, fill: color.black}), 

Balloon({y: sample.y, color: v(i)})])))) 

function Balloon({x, y, color}) {
  return Frame({x, y}, [ 

Ellipse(...), Ellipse(...), 

Rect(...), Rect(...)]) 

} 

Fig. 8: A scatterpie, flower chart, and balloon chart. Their specifications 
are closely related. The flower chart replaces the scatterpie’s Rect with 
a custom Petal and adds a stem. The balloon chart replaces the flower 
with a custom Balloon element and adds a Wavy coordinate transform. 

pie chart. By replacing the Rect shape with a custom Petal shape and 
adding green Rects for stems, we can create a flower chart reminiscent 
of the OECD Better Life Index visualization [41]. Our petal is inspired 
by Jeremi Stucki’s reimplementation of the flowers². While this speci 
fication is more composable than a typical GoG specification, it still 
require GoFish’s lowlevel API. We discuss this further in Sec. 7.3. By 
replacing the inner Frame with a custom Balloon element (this time 
created as a composition purely of GoFish Rect and Ellipse shapes), 
changing the color of the stem, and applying a Wavy transform to the 
outer Frame, we can create a whimsical balloon chart. 

7.3 Limitations 
Embedding aesthetic dimensions. While we embed aesthetic dimen 
sions when they are used by graphical operators, this can lead to 
confusing behavior. Embedded aesthetic values refer to Underlying 
space while nonembedded values refer to Display space. Since a 
graphical operator can change the embedding mode automatically, this 
creates a hidden dependency between graphical operators and shape 
embedding that can be surprising. See Fig. 9. While we believe our 
embedding properties are correct, this spooky action at a distance 
suggests that our current approach to embedding inference may be too 
aggressive. We wonder if lightweight user annotations for embedding 
aesthetic values could alleviate some of this confusion. 

Embedding Aesthetic Dimensions 

Fig. 9: Shape embedding can implicitly change the meaning of aesthetic 
channels as they switch from Display to Underlying space. 

²http://bl.ocks.org/herrstucki/6199768 
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Scale-aware operators. Our approach to recursive size scale resolu 
tion currently only works for datadriven shape sizes. However, the 
nested mosaic chart required setting datadriven sizes for intermediate 
Stacks. Similarly, unlike specialized waffle mark implementations, 
our implementation of waffle charts cannot compute the number of 
items per row automatically. The Atom grammar solved similar issues 
using scale resolution that terminates at intermediate nodes and by 
letting operator layout depend on scales. We could implement similar 
functionality by surfacing scale constraints during the layout process. 

Axes and legends. Our current implementation supports one global 
discrete color scale, one xaxis, and one yaxis. While building our ex 
ample gallery, we sought to match existing GoG library axis and legend 
designs. However, we noticed that charts using centeralignment, like 
streamgraphs, or stacks with nonzero spacing do not typically have 
axes even though they use datadriven encodings. These charts are easy 
to specify in GoFish and generate complex internal scales (Sec. 6.1). 
We intend to refine our theory of scales to create a more robust and 
expressive axis and legend model in future iterations of GoFish. 

Algorithmic layout. To emphasize GoFish’s compositional power, 
we did not explore custom layouts like tidytree or Sankey. However, 
these are natural next steps to investigate. As the GoFish layout 
architecture isn’t based on a constraint solver, these layouts could be 
added as custom graphical operators. Based on a brief investigation of 
D3′s implementations, we suspect there is additional structure in these 
layouts that could be integrated more deeply within GoFish, including 
scale resolution calculations and additional graphical operators (e.g., 
alignment and distribution) that many of these layouts encapsulate. 

Extensible elements and operators. While simple function ab 
stractions over collections of shapes and operators is possible (Fig. 8), 
we noticed limits to this extensibility when dealing with more complex 
compositions. For example, we used the waffle stacking pattern twice, 
once in the walkthrough and again in the example gallery. It would 
be natural to try to create a custom waffle operator by composing 
GoFish primitives. However, in doing so, we find ourselves wanting 
some of the affordances of the GoG, like the pattern of a mark taking 
a dataset and field encodings rather than the GoFish pattern of raw 
data values. We suspect a framework like Encodable [52], which wraps 
lowlevel shapes to create GoGstyle ones, could be adapted to help 
GoFish users create their own custom chart templates by composing 
GoFish’s primitive shapes and operators. 

Editing viscosity. Through building examples and gathering infor 
mal feedback, we found that the highly nested structure of GoFish 
specifications, while expressive, can make editing large specifications 
difficult as it is easy to get lost in scopes and parentheses. Moreover, 
most of our specifications have linear structures that don’t benefit 
from the branching afforded by nesting. We also noticed that graph 
ical operators are often combined with the same data operators. For 
example, Stack and groupBy almost always appear together. Based on 
comparisons to GoG implementations and early feedback on GoFish’s 
design, we have started prototyping a lighterweight alternative syntax 
that removes the need for callbacks and nesting in most cases, and that 
may be more familiar to GoG users. For example, the ribbon chart in 
Fig. 4 could be written like so: 

rect(sf, {w: 16, h: "count", fill: "species"})
  .stackY("species", {spacing: 0, sortBy: "count"})
  .stackX("lake", {spacing: 64})
  .connectX("species", {opacity: 0.8}) 

8 Comparison to Mascot 

Mascot [26] is a recent visualization grammar that, like GoFish, 
separates marks into shapes and operators. However, whereas GoFish 
draws its inspiration from the ideas of Wilkinson, Bertin, and Tversky 
— and thus more naturally integrates and extends the GoG — Mascot 
offers a more notable departure from this tradition by drawing inspi 
ration from direct manipulation graphics systems such as Adobe 
Illustrator as well as interactive systems like ArcGIS. These different 
lineages result in contrasting language designs with several important 
consequences for how charts are constructed with each system. 

let scn = msc.scene() 

let rect = scn.mark("rect", {top:0, left:0, width:32, height:300,
fillColor:"#fff"}) 

let sf = ... 

let lakes = scn.repeat(rect, sf, {attribute: "lake"}) 

lakes.layout = msc.layout("grid", {numRows: 1, colGap: 8}) 

let {newMark} = scn.divide(rect, sf, {orientation: "vertical",
attribute: "species"}) 

scn.encode(newMark, {attribute: "count", channel: "height"}) 

scn.encode(newMark, {attribute: "species", channel: "fillColor"}) 

Listing 2: A Mascot specification of the stacked bar chart from Sec. 3.2. 

8.1 Mutable vs. Declarative 
Mascot grew out of Data Illustrator’s intermediate representation [28] 
and, as a result, its primitives are designed to reflect the procedural 
steps a user would perform in Data Illustrator’s graphical interface. 
For instance, as the Mascot specification in Lst. 2 shows, to produce a 
stacked bar chart, a user first creates a single rect mark with a given 
position, size, and color; repeats the rectangle for every unique lake 
in the dataset, sf; and lays the resultant rectangles in a row. To stack 
the rectangles, the user divides each rectangle vertically, one for each 
species; and then they encode count to each divided rectangle’s 
height and species to color. In contrast, GoFish specifications are 
designed to reflect a chart’s ultimate visual structure. For instance, to 
produce the same stacked bar chart, a GoFish user would author the 
specification presented in Sec. 3.2: a user nests rectangles (Rect) in 
vertical stacks (StackY) within horizontal stacks (StackX). 

As the Mascot authors argue, one of the key advantages of its 
stepwise procedural approach is the ability for visualization authors to 
“inspect and debug intermediate visualization states” [27]. However, 
as we demonstrate in Sec. 3, incremental stepwise authoring is also 
possible with GoFish’s declarative approach. For instance, with our 
running example, a GoFish user can start with a single rectangle: 
Rect({x: 0, y: 0, w: 32, h: 300, fill: "#fff"}). Then 
successively bind it to data, and introduce each level of stacking 
one at a time (i.e., Rect → For(lake, ...) → StackY → 
For(groupBy(...)) → StackX) where each step would produce a 
valid, renderable output. 

A bigger difference, however, lies in how the (im)mutability of each 
system’s primitives impacts a user’s ability to reason about a chart 
specification after it is written. Mascot’s primitives are mutable: each 
successive statement may overwrite previous statements. In Lst. 2, 
we can see that although the rects are initialized with a given size 
and position, these are overwritten by subsequent layout, divide, 
and encode operators. In contrast, and as we describe in Sec. 4.3.2, 
GoFish’s graphical operators are immutable: they cannot further mod 
ify any properties of a shape that have been set. As a result, Mascot 
favors local modification while GoFish favors local reasoning. That 
is, although GoFish can support incremental authoring, certain steps 
may require changing the specification in multiple places (e.g., moving 
the height encoding of 300 from the Rect shape to the overall chart). 
Mascot’s procedural steps enable more atomic and local edits, but 
pose challenges when an author needs to debug an unexpected output 
state. For instance, although the the initial rect mark in Lst. 2 defines 
a white fill color, a width, and a height, a user must scan the full 
specification to understand that the resultant values of these properties 
are determined in three different ways: the white fill does not affect 
the result, because it is overridden by a datadriven fill encoding; the 
defined width indeed reflects the width of the rendered bars; but the 
height corresponds to the height of the overall chart raher than the 
individual rects. In contrast, a user is able to reason about a GoFish 
specification in a more localized fashion: looking at the GoFish Rect 
call, they can see immediately that its width is constant while its height 
and fill are datadriven. 

8.2 Operators 
Mascot and GoFish share a similar collection of operators, but these 
operators differ significantly because of the systems’ different influ 
ences and motivations. 
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Repeat vs. For. Mascot uses an editing style reminiscient of 
GARNET’s prototypeinstance model [30]. The repeat operator takes 
the rect “prototype” and creates copies with the same attributes 
but different, implicit data scopes. GoFish’s For, on the other hand, 
uses function composition and a callback whose argument serves as 
an explicit data scope. By separating encodings from the initial mark 
definition, Mascot avoids the use of anonymous functions, a construct 
that can be confusing for new users. The tradeoff, however, is that 
data scopes become a hidden dependency. Mascot’s encode function 
requires a user to search for previous operations in the spec that created 
the current data scope, making it harder to customize that scope. 

Repeat and Divide vs. Stack. Notice that Mascot uses two opera 
tors, repeat and divide, for the bar chart while GoFish only uses one. 
The advantage of distinguishing between repeat and divide is that 
it better represents the structure of the graphic. The divide operator 
emphasizes that the vertical stacking in a stacked bar chart creates a 
parttowhole relationship (where a whole rectangle has been divided 
into parts), whereas repeat emphasizes that the horizontal stacking 
places marks in a 1D grid of evenly sized regions. This may encourage 
users to think more explicitly about what spatial relationships they are 
encoding in their graphic. By opting to use a single Stack operator 
for both structures, GoFish provides a more consistent design with 
fewer edge cases (as the divide operator only applies to a few mark 
types) and only one stacklike operator to choose from. But it does not 
explicitly capture this parttowhole structure. We are eager to explore 
whether our “edge” and “center” modes could be adapted to serve 
the roles of divide and 1D grid layout, respectively, while retaining 
Stack’s composability. 

Divide vs. Coordinate Transforms. Mascot supports pie and donut 
charts using the same divide operator as for vertically stacking bars. 
In this more general setting, divide acts as a datadriven version of the 
Scissors and Knife tools in Adobe Illustrator [1, 28], which cut objects 
into pieces. For example, a Mascot user can divide a circle into data 
driven pie wedges or nested rings. These tools provide a powerful 
physical metaphor for chart authoring, and they tie Mascot’s primitives 
closely to Illustrator’s. However, what they gain in closely mapping to 
Illustrator, they lose in generality. Mascot division is tied closely to the 
shape being divided, so it is not possible to create arbitrary coordinate 
systems in Mascot or take an existing chart and transform it to polar 
space. On the other hand, Mascot’s APIs use more familiar terms. In 
GoFish, users must mentally translate Cartesian encoding and operator 
names like h and StackX to polar coordinates. And coordinate transfor 
mation in general may be less familiar to Adobe Illustrator users. One 
interesting path forward that blends the Mascot and GoFish approaches 
would be to let paths and polygons induce coordinate systems as can 
be done already in Inkscape and Illustrator. 

Densify vs. Connect. Mascot constructs area and line charts using 
the densify operator whereas GoFish constructs them using Connect. 
Because densify modifies lines and areas directly, Mascot cannot 
easily connect shapes to each other. In a connected scatter plot, for 
example, a Mascot user must specify the scattered circles with para 
meters on the line mark: 

scn.mark("line", {x1: 100, y1: 100, x2: 600, y2:500, strokeWidth: 
2.5, strokeColor: "black", vxShape: "circle", vxRadius: 3.5,
vxFillColor: "white", vxStrokeColor: "black", vxStrokeWidth: 1}); 

let polyline = scn.densify(line, drivingShifts); 

polyline.curveMode = "natural"; 

scn.encode(polyline.firstVertex, {attribute: "miles", channel: "x"}); 

scn.encode(polyline.firstVertex, {attribute: "gas", channel: "y"}); 

The vxShape parameter is restricted only to rectangle and circle marks 
and the other vx parameters are passed to the vertex mark. In GoFish 
a connected scatter plot uses Connect and a shape like Ellipse: 

Frame([ 

For(drivingShifts, (d) => 

Ellipse({x: v(d.miles), y: v(d.gas), ...}).name(`${d.year}`)), 

ConnectX({ ... }, For(drivingShifts, (d) => Ref(`${d.year}`)))]) 

However, unlike Mascot’s line, any primitive or composite element 
can be used to mark the points. 

9 Towards an Open Formal Theory of Visualization 

In this paper we presented GoFish, an expressive visualization gram 
mar that formalizes Gestalt principles for creating a wide range of 
statistical graphics. By decomposing GoG marks into Bertin marks, 
data transforms, and graphical operators, GoFish formalizes more of 
the “deep grammatical structure” [50, p. x] of graphics, yielding a more 
expressive and composable language. 

GoFish is part of a bigger shift in visualization: the relational 
paradigm. Researchers in both grammar design and graphical percep 
tion have begun to question the ability of marks and channels alone 
to satisfactorily build or analyze charts. McNutt identified an explo 
sion of domainspecific grammars, many of which present domain 
specific compositional operators inspired by Gestalt principles [29]. 
For example, GoTree enumerates Gestalt principles shared by many 
tree visualizations including rough analogs to Stack, Connect, and 
Enclose. As for graphical perception, Bertini et al. note that if we take 
channel effectiveness seriously, then “any chart that is not a dot plot or 
scatter plot is deficient and should be avoided,” because position along 
a common axis is the most effective channel [7]. As Ziemkiewicz and 
Kosara argue, “we lack a model of visualization that can satisfyingly 
explain” how people derive meaning “purely from differences in shape 
and arrangement, rather than from real differences in data values” [55]. 
Recent work has explored how varying Gestalt principles and relative 
label placements affect the afforded messages of various charts [8, 
14, 42]. GoFish contributes a formal model of Gestalt principles in 
visualization that could be used to more systematically explore new 
domainspecific grammar designs or conduct effectiveness studies. 

The relational paradigm changes the kinds of research questions 
we can ask. For example, it prompts us to look for, and potentially 
formalize, Gestalt principles in interaction and animation. As identi 
fied by Pollock et al. [33], by reexamining existing animation 
grammars we can find many temporal Gestalt principles. The Gemini 
grammar’s [23] concat and sync operators act as temporal spacing 
and alignment, respectively, which are the constituent Gestalt princi 
ples of Stack. In the CAST animation system [15, 16, 40], animations 
may be staged or nested, conveying information similar to a tempo 
ral Enclose. We wonder whether future animation grammars could 
benefit from a temporal Connect that animates an element along a 
path between two other elements. We can find potential analogs in 
interaction, too. Gestalt principles seem to manifest in interactions as 
userdriven groupings. For example, brushing can be thought of as 
userdriven enclosure, and generalized selections [19] allow users to 
select marks based on shared attributes like color and shape. 

But motivated by the parallel shift in graphical perception research, 
perhaps the most important question we can ask about grammar design 
is “what role does effectiveness play in a world beyond marks and 
channels?” In the GoG, a fixed collection of marks and channels 
creates a finite, combinatorial design space. In an effort to help users 
make useful charts, many GoG libraries aim to make every point in 
this space “good.” To do so, they make classically ineffective charts, 
like pie charts, inexpressible. For example, the pie chart issue in Vega 
Lite remained open for four and a half years with the explanation that 
“[w]e have not spent much time on [this issue] because pie chart[s]… 
generally [lead] to perceptual issues” [3]. Similarly, Observable Plot’s 
pie chart issue has been open for five years [2]. 

In contrast to the GoG, a finite set of shapes and graphical operators 
yield an infinite, yet structured, design space. We can’t evaluate every 
point in this space, onebyone, and determine if it’s good or bad. It’s 
not even clear that we should. Research has found that pie charts, for 
instance, can sometimes be more effective than other representations 
[17], and as we saw in Sec. 7.2, support for pie charts is a prerequisite 
for both scatterpies and flower charts. To move forward and continue 
to support users’ needs, we need to return to Wilkinson. The GoG “is 
capable of producing some hideous graphics. There is nothing in its 
design to prevent its misuse” [50, p. 15]. Yet the structure of the gram 
mar ensures that it “cannot produce a meaningless graphic,” [50, p. 15]. 
That is, by ensuring that scales, geometry, and coordinate transforms 
are applied in the correct order, the GoG ensures a chart is meaningful. 
By managing scales, shape embeddings, and coordinate transforms for 
a much larger design space, we continue Wilkinson’s aim of helping 
people create meaningful visualizations. A scatterpie helps a scientist 
understand plankton biodiversity, a flower chart invites engagement, a 
balloon chart cheers up a friend on a bad day. 
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