
FabObscura: Computational Design and Fabrication for
Interactive Barrier-Grid Animations

Ticha Sethapakdi
MIT CSAIL

Cambridge, MA, USA

Maxine Perroni-Scharf
MIT CSAIL

Cambridge, MA, USA

Mingming Li
Zhejiang University
Hangzhou, China

Jiaji Li
MIT CSAIL

Cambridge, MA, USA

Justin Solomon
MIT CSAIL

Cambridge, MA, USA

Arvind Satyanarayan
MIT CSAIL

Cambridge, MA, USA

Stefanie Mueller
MIT CSAIL

Cambridge, MA, USA

Figure 1: FabObscura is a system for creating visually dynamic physical media based on the classic barrier-grid animation
technique. We introduce a novel parameterization and computational design tool for systematically designing new barrier-grid
animations without domain expertise. Our abstraction is expressive enough to support animations that respond to diverse user
interactions, such as translations, rotations, and changes in viewpoint.

Abstract
We present FabObscura: a system for creating interactive barrier-
grid animations, a classic technique that uses occlusion patterns
to create the illusion of motion. Whereas traditional barrier-grid
animations are constrained to simple linear occlusion patterns,
FabObscura introduces a parameterization that represents patterns
as mathematical functions. Our parameterization offers two key
advantages over existing barrier-grid animation design methods:
first, it has a high expressive ceiling by enabling the systematic
design of novel patterns; second, it is versatile enough to represent
all established forms of barrier-grid animations.

Using this parameterization, our computational design tool en-
ables an end-to-end workflow for authoring, visualizing, and fabri-
cating these animations without domain expertise. Our applications
demonstrate how FabObscura can be used to create animations
that respond to a range of user interactions, such as translations,

This work is licensed under a Creative Commons Attribution 4.0 International License.
UIST ’25, Busan, Republic of Korea
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2037-6/2025/09
https://doi.org/10.1145/3746059.3747629

rotations, and changes in viewpoint. By formalizing barrier-grid
animation as a computational design material, FabObscura extends
its expressiveness as an interactive medium.

ACM Reference Format:
Ticha Sethapakdi, Maxine Perroni-Scharf, Mingming Li, Jiaji Li, Justin
Solomon, Arvind Satyanarayan, and Stefanie Mueller. 2025. FabObscura:
Computational Design and Fabrication for Interactive Barrier-Grid Anima-
tions. In The 38th Annual ACM Symposium on User Interface Software and
Technology (UIST ’25), September 28-October 1, 2025, Busan, Republic of Korea.
ACM,NewYork, NY, USA, 16 pages. https://doi.org/10.1145/3746059.3747629

1 Introduction
Physical occlusions, or barriers, are integral components of our
daily environments, manifesting as window blinds, curtains, fenc-
ing, packaging, and architectural facades. Historically, barriers have
also played a role in animation through aptly-named barrier-grid
animations, which employ occlusion patterns to encode animation
frames and produce the illusion of movement [20, 28, 32]. Con-
ceived in the 19th century, barrier-grid animations offer a means
of presenting dynamic content without relying on electronics or
advanced materials. In the earliest forms of barrier-grid anima-
tions, users “played” the animation by sliding a striped transparent

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3746059.3747629
https://doi.org/10.1145/3746059.3747629

UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea Sethapakdi et al.

overlay across an interlaced image that encodes the animation
frames [21, 38].

Over the years, barrier-grid animations have been adapted to
accommodate a range of materials, form factors, and interactions.
Visual artists and designers have leveraged the technique to create
a variety of visually dynamic interactive artifacts, from books with
illustrations that animate as you turn the page [30], to analog clocks
with dynamic faces that shift with each tick [37], to 10-foot-tall
murals that morph as you walk past them [6]. These applications
demonstrate how barrier-grid animations can be designed to re-
spond to different interaction modalities: translations, rotations,
and changes in viewpoint.

Although barrier-grid animations offer a promising approach
for turning physical occlusions into dynamic design materials, they
currently exhibit a very limited visual vocabulary. Designs pre-
dominantly rely on linear occlusion patterns (i.e., straight vertical,
horizontal, or radial lines), which constrains the range of achievable
visual effects and motion qualities. While some experienced optical
artists like Rufus Butler Seder [11] and Gianni Sarcone [26] have
developed a handful of novel barrier-grid designs as part of their
creative practice, their methods remain as tacit knowledge that
is neither formalized nor easily reproducible without significant
domain expertise.

The absence of systematic design methods and prototyping tools
fundamentally constrains what creators can achieve with barrier-
grid animations. Designers are caught between either using spe-
cialized tools that restrict creative exploration, or general-purpose
software operate at incorrect levels of abstraction. Several online
tools exist for creating barrier-grid animations [4, 17, 24]. How-
ever, each is tailored to a single type of animation and prevents
users from designing novel patterns or exploring different anima-
tion styles. Alternatively, users may construct animations manually
with imaging software such as Adobe Photoshop—however, such
general-purpose tools operate at the pixel level rather than shape
the higher-level patterns and behaviors that govern barrier-grid an-
imations. This discrepancy makes iterative exploration challenging
and inhibits creative experimentation with the medium.

Current limitations in barrier-grid animation creation processes
pose substantial barriers to entry for both novices exploring the
medium and experienced designers seeking to advance it as a form
of visual expression. This presents an opportunity for computa-
tional tools that can both lower the threshold for newcomers and
raise the expressive ceiling [19] for seasoned artists, enabling barrier-
grid animations to be more broadly adopted as a design material.

This paper introduces FabObscura, a design and fabrication sys-
tem for interactive barrier-grid animations. By identifying and
formalizing the canonical properties of barrier-grid animations,
we derive a novel parameterization that significantly extends the
technique’s expressive capabilities. Our parameterization enables a
computational design and fabrication workflow for designers to ex-
periment with and create new barrier-grid animation forms without
domain expertise. In contrast to existing workflows, our technique
supports a high expressive ceiling (i.e., it provides a means of sys-
tematically creating new barrier designs) and low-viscosity [8] (i.e.,
it allows users to explore designs under different representations

with low friction). To demonstrate how FabObscura enhances the ex-
pressivity of physical objects, we present six fabricated barrier-grid
animations integrated into various form factors.

Our contributions are:

(1) A novel parameterization of barrier-grid animations that enables
the creation of diverse occlusion patterns;

(2) A design tool for authoring, visualizing, and fabricating different
types of barrier-grid animations;

(3) A technical evaluation that quantifies the trade-offs between
different pattern parameters and provides guidelines for optimal
visual quality;

(4) Six fabricated applications that showcase how our technique
can support expressive interactions and dynamic visual com-
munication across a range of form factors.

2 Related Work
FabObscura builds upon research on fabrication systems for physical
artifacts whose visual appearance changes in response to external
stimuli.

2.1 Fabricating Visually Dynamic Objects
Fabricating physical objects with dynamic appearances, such as
view-dependent visuals or interactive color-changing effects, has
been a central focus in HCI and computational fabrication research.
This line of work explores how to imbue physical artifacts with
changing visual properties that respond to user interaction or envi-
ronmental stimuli [9].

Researchers have devised various techniques for making color-
changing displays from materials that react to changes in environ-
mental conditions. For instance, thermochromic inks, which change
color with temperature, have been used to produce temperature-
responsivemotion effects [48] andmulticolored shifting images [33].
Similarly, researchers have applied photochromic inks, which change
color when exposed to ultraviolet light, to create surfaces and ob-
jects with dynamically reprogrammable appearances [12, 51]. In
Polagons [31], birefringent materials produce mosaic displays that
change appearance based on incident polarized light.

Other techniques focus on precisely modifying a material’s sur-
face microstructure to produce view-dependent effects. For exam-
ple, lenticular lenses are microstructured optical elements consist-
ing of an array of magnifying lenses that direct light in specific
ways based on viewing angle. They have been used to create three-
dimensional objects with viewpoint-dependent appearances [50],
and even dynamic gastronomic experiences in which food visu-
ally transforms [46]. Pjanic and Hersch [23] create metallic, light-
dependent visual effects by printing anisotropic halftones (i.e., small
colored ink lines) onto metal surfaces. These halftones produce dif-
ferent colors depending on the orientation of the surface relative
to the light source, resulting in distinct visual outputs at 90-degree
rotations. Shen et al. [34] employ a differential rendering-based op-
timizer to create scratch patterns on metallic surfaces, causing them
to reflect different light fields based on the direction of the incident
light. This enables viewers to perceive different images depending
on their viewing position. Levin et al. [14] use a multi-step process

FabObscura: Computational Design and Fabrication for Interactive Barrier-Grid Animations UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea

involving etching and photolithography to create custom Bidirec-
tional Reflectance Distribution Functions (BRDFs) that modify a
surface’s appearance based on the viewing angle.

Finally, researchers have developed a range of support tools for
making artifacts that animate through mechanical motion. For ex-
ample, researchers developed computational design and fabrication
systems that allow non-expert users to create complex kinematic ar-
tifacts [5, 15, 16]. Miyashita et al. [18] and Kushner et al. [13] applied
the classic Zoetrope animation technique to create mechanically
actuated displays that reveal three-dimensional frame-by-frame an-
imations. Complementary to these approaches, FabObscura draws
inspiration from barrier-grid animation to produce a range of visual
effects—including color-change and motion—that are triggered by
simple mechanical movements like sliding and rotation.

2.2 Occlusion-Based Visual Effects
Our work leverages the natural properties of occlusion to create
the illusion of motion. Self-occlusion, where certain parts of an
object block others depending on the viewing angle, is a common
technique for creating visual effects by manipulating geometry.

Several previous studies have explored self-occlusion as part
of various physical displays. Sakurai et al. [25] use fixed-height
fields to create self-occlusion effects over colorful subcells, while
Abu Rmaileh and Brunton [1] generate color variations across 3D
surfaces using meso-faceted heightfields. Expanding on these ap-
proaches, Perroni-Scharf and Rusinkiewicz [22] introduce a gradient-
descent optimization that fine-tunes height and color within a
heightfield to achieve specific view-dependent effects. In all these
methods, subtle height variations are used to manipulate occlusion,
light and shadow, resulting in visually dynamic surfaces.

In addition, several studies have explored how self-occlusion can
enhance lighting-dependent effects. Parallax Walls [36] create light
fields from small occluding walls, with the display’s color shifting
depending on the direction of the incident light. Similarly, Shad-
owPix [3] uses an optimization algorithm to adjust wall heights,
casting shadows that change with varying light angles. Yamamoto
and Sugiura [44] apply this principle to carpets, transforming them
into switchable multi-image displays by manipulating fiber direc-
tion to create different shades based on the position of the light
source or the viewer’s perspective. In a related approach, Wetzstein
et al. [43] explore the use of layered transparent light modulators
to generate light fields, making 2D displays appear 3D.

2.3 Applications of Dynamic Physical Media
Dynamic physical media are gaining popularity in HCI due to their
ability to offer novel interactions to real world objects. Recent
advances in display fabrication provide valuable insights into in-
tegrating interactivity and personalization [10, 42, 45], enabling
dynamic media to be used for a range of practical applications.

In educational settings, dynamic media have been used to create
interactive and hands-on learning experiences. Reflection holo-
graphic displays have been used for 3D anatomical diagrams for
medical students, improving spatial reasoning [39]. Research indi-
cates that dynamic, multi-dimensional visual aids engage students
more effectively and improve learning outcomes compared to tra-
ditional 2D materials [47].

Dynamic media can also provide valuable real-time feedback and
visual cues. Ronchi and Moiré patterns, for instance, are commonly
employed in surface defectometry and geometric analysis due to
their ability to encode information in parallel striations that shift
with viewing angles [2]. These patterns have been applied to 3D
objects to extract geometric data for critical robotics tasks such as
pose estimation and object tracking. Moiré Widgets [49] demon-
strated how to use Moiré patterns to create battery-less tangible
interfaces with interactive capabilities.

3 Background: Barrier-Grid Animations
FabObscura is based on the principles underlying barrier-grid ani-
mations, which are so-called for their use of occlusions, or “barri-
ers”, to selectively hide or reveal portions of an animated sequence.
In this section, we explain the working principles of barrier-grid
animations, survey their known variants, and identify canonical
properties that unify all variants.

3.1 Basic Construction
Fundamentally, barrier-grid animations have two components: an
interlaced image and a barrier pattern. A barrier represents a striped
pattern composed of opaque and transparent regions. An interlaced
image is a composite image that encodes an animation sequence
by slicing multiple individual frames into equally sized strips and
stacking them in an alternating sequence (Fig. 2).

Figure 2: The interlacing process for a (a-c) three frame ani-
mation depicting an opening eye. The (d) interlaced image is
created by (e) slicing and combining strips from each frame
in an alternating sequence. The corresponding (f) barrier pat-
tern consists of opaque stripes that block two frames while
its transparent regions reveal the third frame.

For a barrier-grid animation to work correctly, the interlaced frame
strips and barrier must be properly aligned so that, when the barrier
is placed on top, it masks all frames except for the one currently
being viewed. This imposes two design constraints:
(1) If the interlacing direction determines the orientation of the

interlaced image strips, the barrier stripes must follow the same
direction to ensure proper masking;

(2) In an animation with 𝑛 frames, if each interlaced frame strip has
width𝑤 , the barrier must alternate between transparent stripes
of width𝑤 and opaque stripes of width (𝑛 − 1)𝑤 to ensure that
only one frame is visible at a time.

UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea Sethapakdi et al.

Violating either of these constraints results in an undesired effect
called ghosting. This occurs when portions of frames other than the
intended frame of interest are visible at a given view, resulting in
faint ghost-like interference patterns becoming visible on top of
the main image shown.

Next, we present a typology of barrier-grid animations, catego-
rizing them based on their interaction mechanisms and the distinct
visual effects that they produce.

3.2 Sliding Animations
The oldest and most widely-used variant of barrier-grid animations
relies on sliding interactions. Typical sliding animations make
use of horizontally- or vertically-oriented barriers. The barrier’s ori-
entation determines the interlacing direction as well as the primary
axis of motion: when a barrier is placed on top of an interlaced im-
age, sliding it along the interlacing direction causes the transparent
regions to sequentially reveal different portions of the underlying
animation frames (Fig. 3). Continuing to slide the barrier makes the
animation loop back to the first frame after revealing the last.

Figure 3: Sliding the (a) horizontal barrier down the (b)
horizontally-interlaced image (c) sequentially reveals dif-
ferent frames. Similarly, sliding a (d) vertical barrier across a
(e) vertically-interlaced image interlaced sequentially reveals
(f) the underlying animation.

3.3 View-Dependent Animations
While traditional barrier-grid animations require users to physically
slide its constituent components, artists devised a technique that
supports view-dependent interactions [6, 29]. View-dependent
animations maintain a fixed separation between the interlaced
image and barrier layers within a connected structure. As users
change their viewing angle—either by repositioning themselves
or tilting the structure—the resulting parallax effect produces the
same sequential animation as sliding animations (Fig. 4).

Although view-dependent animations have the advantage of
providing a “hands-free” interaction experience, they also intro-
duce new alignment challenges. Increasing the distance between
the interlaced image and barrier increases the amount of parallax,
meaning that a smaller change in the viewing angle is required to
advance to the next frame. However, as the distance between the in-
terlaced image and barrier layers increases, they gradually become
more misaligned due to perspective effects (e.g., the barrier may
appear much larger than the interlaced image). Thus to mitigate
ghosting, designers must manually adjust the size of the interlaced
image to maintain proper alignment between layers.

3.4 Rotational Animations
As previously discussed, the barrier orientation and correspond-
ing interlacing direction determine the animation’s direction of

Figure 4: Viewing a barrier-grid animation from different
angles produces the same effect as sliding the barrier. (a)
Moving left (or tilting counterclockwise) simulates sliding
a vertical barrier right. (b) Viewing from above (or tilting
downward) simulates sliding a horizontal barrier down.

Figure 5: Rotational barrier-grid animations feature (a) a
radial barrier pattern and (b) radially interlaced image with
frames arranged in alternating wedges. Rotating the barrier
pattern clockwise sequentially reveals (c) underlying frames.

motion. Whereas sliding and view-dependent animations are lin-
early interlaced along the 𝑥 or 𝑦 axes, we can also perform radial
interlacing along the polar axis. This yields a construction that facil-
itates rotational interactions [27]. Under this scheme, the barrier
pattern and interlaced image have radial symmetry and comprise
wedge-shaped segments that extend from the center (Fig. 5). Rotat-
ing a barrier clockwise around the center advances the underlying
animation.

3.5 Canonical Properties
From our analysis of barrier-grid animation types, we see that
the barrier pattern significantly influences the aesthetics of the
animation and achievable visual effects. However, existing patterns
are largely limited to straight horizontal, vertical, or radial lines.
Generalizing these patterns into more diverse forms is therefore
key to extending expressivity.

The first step to generalizing barrier-grid animations is defin-
ing a set of canonical properties that any barrier pattern variant
must satisfy. From closely studying the variants and their design
constraints, we identified three fundamental properties:
(1) Seriality: The pattern sequentially reveals corresponding strips

of different frames as it moves along a fixed direction;

FabObscura: Computational Design and Fabrication for Interactive Barrier-Grid Animations UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea

(2) Periodicity: The pattern repeats at regular intervals and aligns
precisely with the interlacing period, returning to the first frame
after the last;

(3) Discreteness: The transparency distribution of the pattern
ensures that at most one frame is fully visible at each time step.

Together, these properties provide a conceptual framework for the
space of valid barrier patterns that applies to all types of barrier-grid
animations.

4 Design Space
In this section, we establish the design space that guides our com-
putational approach to barrier-grid animation.

4.1 Parameterizing Patterns
Guided by our canonical properties from Section 3.5, we can build
a parameterization that encompasses the space of valid barrier
patterns. To satisfy seriality, the barrier pattern must be aligned to
the interlacing path, i.e., the shape of each barrier segment must
match the shape of each interlaced strip. To satisfy periodicity,
each barrier segment must be duplicated multiple times to form a
repeating pattern. Thus, we can conceptualize any barrier pattern
as a sequence of pattern units that are repeatedly stacked along
the axis corresponding to a given direction of motion. We preserve
discreteness by making the stack alternate between opaque and
transparent units.

Defining the Shape of a Pattern Unit. Consider a linear (i.e., sliding
or view-dependent) animation where the direction of motion is ver-
tical. This is equivalent to movement along the 𝑦-axis in Cartesian
space. For an interlacing to be valid, observe that each interlaced
strip must be uniquely identifiable at any 𝑥 position—meaning a
vertical line passing through the image at any 𝑥 coordinate must
intersect each strip exactly once. This property is analogous to the
“vertical line test” in mathematics, which determines whether a
graph represents a function: for each unique input (𝑥-value), there
must be exactly one output (𝑦-value).

Conveniently, this mapping between valid interlaced strips and
functions allows us to parameterize our pattern unit with any math-
ematical function 𝑓 that describes its path as it moves along the
𝑥-axis (Fig. 6). For example, the function 𝑓 (𝑥) = 𝐶 (where 𝐶 is
a constant) creates straight horizontal lines, while 𝑓 (𝑥) = sin(𝑥)
produces a wavy pattern.

Figure 6: Examples of valid patterns for linear animations.

The same one-to-one mapping principle holds for rotational ani-
mations, though now expressed in polar coordinates rather than
Cartesian space. In this framework, the path of each radial line in
the pattern is governed by a function 𝑓 that defines the local incli-
nation (i.e., the turning angle) as a function of 𝑟 , the radial distance
measured outward from the center of rotation. As 𝑟 increases, 𝑓 (𝑟)
controls how much the line bends at each step (Fig. 7). For example,
the function 𝑓 (𝑟) = 0 creates straight radial lines, while 𝑓 (𝑟) = 𝐶

(where 𝐶 is a nonzero constant) produces arcs that spiral out from
the center. Importantly, any circular path centered at the origin
intersects each radial line exactly once.

Figure 7: Examples of valid patterns for radial animations.

Choosing the Direction of Motion. Since pattern units in rotational
animations are stacked along the radial axis, their direction of
motion always follows a circular path. Linear animations, on the
other hand, allow us to define the direction of motion by rotating
pattern units before stacking them (Fig. 8). For example, rotating a
constant function 𝑓 (𝑥) = 𝐶 by 90° changes the direction of motion
from vertical to horizontal by transforming a horizontal striped
barrier into a vertical striped barrier, while rotating by 45° makes
the direction of motion diagonal.

Figure 8: Patterns can be rotated to specify a direction of
motion and/or add visual interest to certain parts of the ani-
mation. Here, we rotate a quadratic function by 110° to em-
phasize the direction that the bird is flying in.

UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea Sethapakdi et al.

Figure 9: An animation of a jumping rabbit interlaced with
three different barrier unit functions at the same resolution.
Each pattern animates along the 𝑦-axis.

Design Parameters. In summary, we use the following parameteri-
zation for our barrier patterns:
(1) Unit Function 𝑓 : The mathematical function that governs the

shape of each pattern unit.
(2) Thickness 𝑡 : A value used to calculate the thickness of the

opaque and transparent units. For an animation with 𝑛 frames,
the pattern alternates between transparent units of thickness 𝑡
and opaque units of thickness (𝑛 − 1)𝑡 .

(3) Direction 𝜃 : The angle that determines the linear animation’s
direction of motion.

Our parameterization provides two key advantages over conven-
tional methods for barrier-grid animation generation. First, it has a
high expressive ceiling as it provides a framework for systematically
generating entirely new forms with predictable behavior. Figure 9
shows several novel patterns alongside their corresponding func-
tions, illustrating how different mathematical formulations extend
the visual vocabulary of barrier-grid animations while preserving
their core properties.

Second, as our parameterization is derived from core barrier grid
animation principles, it generalizes across all barrier-grid anima-
tion variants and provides a means to switch between different
representations with low viscosity. Figure 10 shows how the same
unit function produces a valid animation for all three variants,
which demonstrates the coherence of our parameterization across
different interaction modes.

4.2 Nesting Animations
Interlaced images can be used to encode not only sequences of
animation frames, but sequences of entire barrier-grid animations.
This enables nested animations, where one barrier-grid animation
is embedded within another (Fig. 11). In such compositions, mul-
tiple barrier patterns operate together, each selectively revealing

Figure 10: 𝑓 (𝑥) = 80 · sin(| cos(4𝜋𝑥) |) produces coherent ani-
mations across variants. Each row shows the sequential ani-
mation frames produced by its respective method.

different layers of a complex interlaced image. A primary barrier
may determine which animation is visible, while secondary barriers
control the progression of frames within that animation.

Nested animations can encode a variety of interactions within
a single interlaced image. For instance, we can apply linear inter-
lacing to encode multiple linear animations (Fig. 11a), or even to
encode radial animations, enabling playback that responds to both
translation and rotation (Fig. 11b). Conversely, we can use radial
interlacing to encode linear animations, producing sequences that
require rotation to select an animation and translation to play it.

Theoretically, we can continue this nesting process indefinitely
to create animations within animations within animations. But in
practice, each nesting operation adds another barrier that partially
occludes the underlying image and causes progressive loss of visual
information. We quantify this trade-off in more detail in Section 8.

5 FabObscura: Towards Computationally
Designing Barrier-Grid Animations

We developed FabObscura as a computational design tool that en-
ables users to explore parts of our design space and construct dif-
ferent types of barrier-grid animations. Our tool has two main
components: the pattern editor (Fig. 12a) which provides controls
for specifying the animation’s design parameters, and the interac-
tive canvas (Fig. 12b) which provides visual feedback and direct
interaction with the resulting animation.

FabObscura: Computational Design and Fabrication for Interactive Barrier-Grid Animations UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea

Figure 11: This example illustrates two approaches for making a nested animation from three two-frame animations. In method
(a), sliding barrier (1) vertically activates the inner animation sequence, while sliding barrier (2) horizontally selects which
animation is being shown. In method (b), rotating the radial barrier (1) activates the inner animation sequence, while sliding
barrier (2) horizontally selects the animation.

5.1 Designing Animations
Our tool uses the high expressive ceiling of our parameterization to
provide an exploratory design process where users can construct
valid animations from any mathematical function.

Consider Figure 12, which shows the main FabObscura interface.
1 To begin, the designer selects their animation sequence, which is
a folder containing an image sequence of animation frames. The an-
imation sequence serves as the visual content revealed through the
barrier pattern. 2 As the designer enters the pattern unit function,
3 the interface updates a plot that visualizes the mathematical
expression. This real-time feedback allows designers to develop
intuition about how different functions map to visual outcomes.
4 Next, the designer can adjust the resolution of their animation.
Lower resolution animations use coarser interlacing that requires
larger movements to advance between frames, while higher res-
olution animations have finer interlacing that makes them more
sensitive to movement. 5 Finally, the designer can specify the
direction of motion by applying a rotation. 6 After confirming the
pattern parameters, the system updates the interactive canvas with
the animation and specified barrier pattern.

5.2 Interacting with Animations
The low viscosity of our parameterization allows our tool to provide
an interactive canvas where designers can see how their anima-
tions perform under different barrier-grid configurations. It sup-
ports three interaction modes, each corresponding to a barrier-grid
animation variant (Fig. 13).

Sliding. The sliding interaction mode creates animations that re-
spond to sliding movements. FabObscura simulates this interaction
by making the barrier track the cursor’s 𝑦-coordinate (Fig. 13a). To

Figure 12: The FabObscura interface. In (a) the pattern edi-
tor, the designer configures their animation following our
barrier-grid pattern parameterization. In (b) the interactive
canvas, the designer interacts with their animation across
different barrier-grid animation representations.

ensure proper frame masking, the tool restricts the sliding interac-
tion to follow the pattern’s predefined direction of motion.

Viewpoint. The viewpoint interaction mode uses motion paral-
lax to create view-dependent animations (Fig. 13b). In this mode,
FabObscura simulates the physical separation between barrier and

UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea Sethapakdi et al.

Figure 13: The FabObscura interface supports three interac-
tion modes based on the established barrier-grid animation
types: (a) sliding, (b) viewpoint, and (c) rotation.

interlaced image layers with a 3D preview. Designers can test dif-
ferent viewing angles by moving their cursor to virtually tilt the
animation, and right-clicking locks the current position.

Since view-dependent animations operate in 3D space, the view-
point interaction mode has additional sliders for adjusting the view-
ing distance from the camera, field of view, and distance between
the barrier and interlaced layers. As the user adjusts these values,
the tool corrects any misalignments that may arise from perspec-
tive by automatically resizes the interlaced image (which is further
away from the camera) to align with the barrier.

Rotation. The rotation interaction mode creates animations that
respond to rotational movements (Fig. 13c). FabObscura simulates
rotational interactions by automatically turning the barrier based
on the angle between its center and the cursor’s position.

5.3 Experimenting with Nested Animations
While nested animations can seem initially counterintuitive, FabOb-
scura provides an abstraction that helps designers build intuition for
and experiment with these hierarchical structures. Clicking +Add
creates a second set of pattern parameters for nesting, while -Del
reverts to standard pattern generation.

Consider Figure 14, which shows the interface for creating nested
animations. 1 The designer selects two animations to nest. 2
The top row of pattern parameters controls the settings for each
individual animation within the nest, 3 while the bottom row
defines the pattern that determines how users switch between these
animations. 4 By default, the direction for the nesting barrier is
set to be orthogonal to the animation direction, but the designer
can adjust this value as desired. Once the designer confirms the
parameters, the system creates a nested animation that uses a sliding
barrier as the animation mask.

As with standard animations, the interactive canvas allows de-
signers to interface with the nested animation under different inter-
action modes. Nested animations involve moving multiple barrier
layers to access different levels of the nesting hierarchy. The de-
signer can switch between the barrier being manipulated with the
tab key (Fig. 15).

Figure 14: To create a nested animation, the designer selects
two animations to nest and specifies the pattern parameters
for each nesting layer.

Figure 15: Designers access different levels of the nesting hi-
erarchy by switching between the barrier beingmanipulated.

5.4 Outputs
Each time the user generates their animation, FabObscura outputs
image files for each animation type. For standard animations, the
system produces six raster images: one barrier pattern and one
interlaced image for each of the three animation variants. For nested
animations, the system produces one additional barrier that stores
the nested pattern.

6 Applications
To showcase how FabObscura can extend the visual expressivity of
physical objects, we use our system to fabricate a range of anima-
tions and explore potential applications.

6.1 Objects with Reconfigurable Appearances
Barrier-grid animations can be used to dynamically reconfigure an
object’s appearance to match changing contexts. To demonstrate
this capability, we designed a reconfigurable coaster (Fig. 16) that ac-
commodates to different beverage types. The coaster features three

FabObscura: Computational Design and Fabrication for Interactive Barrier-Grid Animations UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea

distinct designs: a coffee mug, a glass of water, and a cocktail glass.
By sliding the coaster’s outer sleeve, users can immediately change
the displayed design to visually complement the beverage currently
being served. For a contemporary aesthetic, we chose a modulated
triangle wave function to produce a chevron-like pattern. This not
only enhances the coaster’s visual appeal but also demonstrates
how barrier patterns themselves can serve as decorative elements
that contribute to an object’s design language.

Figure 16: A coaster whose appearance can be reconfigured
to complement its beverage.

6.2 Responsive Design
As barrier-grid animations rely on viewing angle and positional
changes that occur naturally in everyday objects, we can use them
to create responsive designs across diverse physical contexts.

Dynamic Containers. We designed two containers that animate as
the user opens them by turning the lids counterclockwise. The first
container depicts a three-frame animation of a snapping crocodile
(Fig. 17). We stylistically emphasize the crocodile’s action by in-
terlacing it with a high frequency sine wave. The second con-
tainer shows a three-frame animation of a flower gradually opening
(Fig. 18). We create a soft spiraling effect that smoothly radiates out
from the center by interlacing the frames with a radial function with
constant curvature. Despite both using rotational motions, each
container conveys a distinct aesthetic through its animation and
interlacing pattern. These examples show how animation enhances
visual communication in physical designs: a snapping crocodile
for a jar of sharp thumb tacks, and a blooming flower for a box of
delicate seeds.

Figure 17: A thumb tack box with a snapping crocodile lid.

Figure 18: A seed box that blooms each time it is opened.

UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea Sethapakdi et al.

Figure 19: A clock design with a mouse that runs as it ticks.

Animated Clock Face. We made a clock face that holds a six-frame
animation of a mouse on a wheel (Fig. 19). As the second hand
moves, the mouse races against time and scurries along the walls
of the clock. We applied a staircase function to create an arrow-like
radial barrier pattern that emphasizes the clockwise motion. This
example illustrates how FabObscura designs can work alongside
common mechanisms, without compromising their functionality,
by using shared interaction patterns.

6.3 Multimodal Interactions
Nested barrier-grid animations can support multimodal interactions
that are not easily achievable with other passive display methods.

Low-Tech Interfaces. We explored how nested animations can be
used as low-tech interfaces that mimic digital interactions. We de-
signed an interactive display that nests two four-frame animations
showing quarter-turn views of low-poly car and motorcycle 3D
models (Fig. 20). Moving the barriers vertically switches between
the two models, while moving horizontally reveals different angles
of the selected vehicle. This interaction mimics digital 3D model
exploration interfaces, where horizontal dragging orbits around
objects and vertical scrolling switches to different views.

Reconfigurable View-Dependent Signage. Our second nested anima-
tion combines a view-dependent animation with a sliding barrier
to create a reconfigurable sign that animates as viewers walk past
it (Fig. 21). We nested two six-frame animations: one displaying
“Wildlife Viewing Area” alongside a flying pelican, and another
showing “Beware of Crocodiles” beside a slinking crocodile. Verti-
cally sliding the nested barrier pattern switches between the mes-
sage being displayed. For the inner barrier that controls the under-
lying animations, we used a piecewise function that bows outward
in the middle while remaining straight at the edges. This directs
visual interest toward the center where the animals are moving,
while maintaining text legibility in the peripheral regions.

Figure 20: An interactive low-tech display that encodes
quarter-turn views for two 3D models.

Figure 21: A reconfigurable dynamic sign that animates as
people walk it. Users can choose which message is being
displayed by sliding the inner barrier.

7 Implementation
We use the Processing graphics library to build the FabObscura
design tool. We additionally run a Python Flask server in the back-
ground to receive data from Processing, construct animations, and
output images.

7.1 Visualization
Our Python program receives values corresponding to the anima-
tion parameters from Processing and outputs raster images cor-
responding to the interlaced image and barrier for the linear and
rotational animations. Processing displays the animation by draw-
ing the barrier on top of the interlaced image.

FabObscura: Computational Design and Fabrication for Interactive Barrier-Grid Animations UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea

Since view-dependent animations operate in 3D space, we visu-
alize them by applying a standard perspective projection with a
user-defined viewing distance (ranging from 20 to 80 inches). We
additionally use a 16-degree field of view.

7.2 Constructing Linear Animations
Recall that a linear barrier-grid animation is constructed from an
interlaced image 𝐼 and barrier pattern 𝐵 that moves along a given
direction of motion 𝜃 . We rotate the set of animation frames so that
the vertical direction aligns to the direction of motion (see below).
Then, for each frame of width 𝑤 and height ℎ, both 𝐼 and 𝐵 are
𝑤 × ℎ images that comprise ⌊ℎ𝑡 ⌋ strips with thickness 𝑡 . Each strip
follows a path defined by the pattern unit function 𝑓 .

Creating the interlaced image and barrier. Suppose we have a se-
quence of 𝑛 animation frames, 𝐹1, . . . , 𝐹𝑛 .To establish notation, if
𝑀 is a image divided into rows of strips with thickness 𝑡 , we let
𝑀 [𝑖] denote the 𝑖-th row of image𝑀 .

Given a pattern unit function 𝑓 , direction of motion 𝜃 , and inter-
lacing thickness 𝑡 , we construct the interlaced image 𝐼 as follows:
(1) As a preprocessing step, we first rotate each input frame 𝐹 𝑗 by

angle 𝜃 (where 𝑗 = 1, . . . , 𝑛). We will assume the rotated frames
are of size𝑤 × ℎ.

(2) For each rotated frame 𝐹 𝑗 , segment it into 𝑁 = ⌊ℎ𝑡 ⌋ strips of
thickness 𝑡 , displaced vertically column-by-column to the path
defined by 𝑓 .

(3) Initialize the interlaced image 𝐼 as a𝑤×ℎ image, then interleave
strips from different input frames according to:

𝐼 [𝑘] = 𝐹𝑘 mod 𝑛 [𝑘], 𝑘 ∈ {1, . . . , 𝑁 }.

This expression ensures that adjacent strips in 𝐼 come from
consecutive frames in the animation sequence.

(4) Finally, we rotate 𝐼 back by angle −𝜃 to ensure that all its strips
are oriented along the direction 𝜃 .

We construct the corresponding barrier 𝐵 as follows:
(1) Initialize 𝐵 as a𝑤 × ℎ image and rotate it by angle 𝜃 .
(2) Segment 𝐵 into 𝑁 strips of thickness 𝑡 , following the same paths

defined by 𝑓 .
(3) Construct barrier 𝐵 by coloring its strips such that:

𝐵 [𝑘] =
{
white if 𝑘 mod 𝑛 = 0
black otherwise

, 𝑘 ∈ {1, . . . , 𝑁 }.

This produces a pattern that alternates between a white (trans-
parent) strip of thickness 𝑡 and 𝑛 − 1 black (opaque) strips of
thickness 𝑡 . The pattern precisely aligns with 𝐼 to reveal only
one frame at a time.

(4) Rotate𝐵 back by angle−𝜃 to ensure that all its strips are oriented
along the direction 𝜃 .

Perspective correction (for view-dependent animations). To correct
any misalignment that may occur due to viewing distance and layer
spacing, we perform an additional resizing step on 𝐼 to ensure that
it lines up with 𝐵 in perspective.

Our perspective correction works as follows: Given a specified
viewing distance, field of view, and spacing between layers, we use
Processing’s raytracer to render a frontal view of both layer planes

(without textures). We then pass this image to OpenCV in Python—
applying thresholding, identifying contours, and calculating the
bounding boxes of both layers. By comparing the width of the
inner rectangle (back layer) to the outer rectangle (front layer),
we determine the precise scaling ratio needed to compensate for
perspective distortion. We apply this ratio to scale the interlaced
image to match the front barrier layer.

7.3 Constructing Rotational Animations
Recall that a rotational barrier-grid animation is constructed from
a radially symmetric image 𝐼 and a corresponding barrier 𝐵, which
rotates clockwise around its center. For animation frames of width
𝑤 and height ℎ, both 𝐼 and 𝐵 are circular 𝑟 × 𝑟 images where
𝑟 = min(𝑤,ℎ). These images are divided into

⌊
360
𝛾

⌋
wedge-shaped

segments, separated by radially curved boundaries spaced at an-
gular intervals of 𝛾 degrees. Each boundary follows a curved path
defined by the pattern unit function 𝑓 .

Determining the shape of radially curved boundaries. Since 𝑓 is
originally defined in Cartesian space, we repurpose it to control
how radial paths bend in polar space, so that they curve outward
without intersecting their neighbors. To do so, we adapt a method
for generating radial moiré patterns by Gabrielyan [7]. We generate
each radially curved boundary by tracing a path outward from the
origin, where the angular position 𝜃 (𝜌) as a function of radius 𝜌
evolves according to a local inclination angle 𝑓 (𝜌).

Let 𝛽 represent the desired angle between neighboring boundary
curves and let 𝑁 =

⌊
360
𝛽

⌋
. To generate the 𝑘-th boundary curve

(where 𝑘 ∈ {0, 1, . . . , 𝑁−1}), we initialize it with the starting angle:

𝜃
(𝑘)
0 = 𝑘𝛽

We then trace the curve by iterating over a sequence of radii
𝜌0 = 0, 𝜌1, . . . , 𝜌𝑚 , which represent evenly spaced distances from
the center of the circle to its outer edge. At each step, the angular
position evolves according to the recurrence:

𝜃
(𝑘)
𝑖+1 = 𝜃

(𝑘)
𝑖

+ 180
𝜋

· (𝜌𝑖+1 − 𝜌𝑖) · tan(𝑓 (𝜌𝑖))
𝜌𝑖

, 𝑖 ∈ {0, . . . ,𝑚−1}.

This process defines the shape of the 𝑘-th radially curved bound-
ary as it spirals outward from its base angle 𝜃

(𝑘)
0 , without in-

tersecting neighboring boundaries. Repeating this process for all
𝑘 ∈ {0, 1, . . . , 𝑁−1} produces a seamless division of a circle into 𝑁

wedge-shaped segments with radially curved boundaries.

Creating the interlaced image and barrier. Suppose we have a se-
quence of 𝑛 animation frames, 𝐹1, . . . , 𝐹𝑛 , each of size 𝑤 × ℎ. For
notation, if 𝑀 is a polar image of radius 𝑅, centered at the origin
and divided into wedge-shaped segments, with each separated by
angle 𝛾 , then let𝑀 [𝑖] denote the 𝑖-th wedge segment in polar space.

Given a pattern unit function 𝑓 and interlacing thickness 𝑡 , we
construct the radially interlaced image 𝐼 as follows:
(1) As a preprocessing step, we crop each animation frame 𝐹 𝑗 (for

𝑗 = 1, . . . , 𝑛) to a circular region with diameter 𝑟 = min(𝑤,ℎ).
We then convert each cropped frame to polar coordinates by
mapping its Cartesian 𝑟 × 𝑟 image to a polar representation
with radius 𝑅. We choose the polar angle 𝛽 to be equal to the
interlacing thickness 𝑡 .

UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea Sethapakdi et al.

(2) For each polar frame 𝐹 𝑗 , segment it into 𝑁 =

⌊
360
𝛽

⌋
wedges

bounded by radially curved paths defined by 𝑓 .
(3) Initialize the interlaced image 𝐼 as a polar image of radius 𝑅.

Construct 𝐼 by interleaving wedge segments from the input
frames as follows:

𝐼 [𝑘] = 𝐹𝑘 mod 𝑛 [𝑘], 𝑘 ∈ {1, . . . , 𝑁 }.
This ensures that adjacent wedges in 𝐼 originate from consecu-
tive frames in the sequence.

We construct the corresponding radial barrier 𝐵 as follows:
(1) Initialize 𝐵 as a polar image of radius 𝑅, centered at the origin.
(2) Segment 𝐵 into 𝑁 wedges bounded by the same radially curved

paths defined by 𝑓 .
(3) Construct 𝐵 by assigning color to each wedge segment:

𝐵 [𝑘] =
{
white if 𝑘 mod 𝑛 = 0
black otherwise

, 𝑘 ∈ {1, . . . , 𝑁 }.

This creates a radial mask that reveals one frame at a time
during rotation, while occluding the others.

7.4 Nesting Animations
To create a nested animation that encodes 𝑚 animations with 𝑛

frames each, we first interlace each animation according to their
barrier parameters as explained in the previous section. Since these
images were interlaced with the same function, they also share
a common barrier. We treat the resulting𝑚 interlaced images as
animation frames and interlace themwith a second set of interlacing
parameters to obtain the nested barrier. For deeper levels of nesting,
we follow the same process to interlace the resulting nested images.

8 Technical Evaluation
We conduct a technical evaluation to assess how hyperparameter
selection affects the visual quality of barrier-grid animations. Since
barrier-grid animations rely on self-occlusion, our goal is to gather
data at sufficient scale to richly detail the tradeoffs between ex-
pressivity and visual quality introduced by different barrier pattern
densities. In doing so, we aim to offer concrete guidance for de-
signing high-quality barrier-grid animations and shed light on the
strengths and limitations of our framework.

Our evaluation focuses on straight line patterns as representative
cases that isolate key parameters of our framework. As fundamen-
tal building blocks widely used in practice, straight line patterns
provide generalizable insights that extend to more complex pattern
functions. Specifically, we compare basic “slat” barrier patterns that
support motion in one direction with nested “lattice” patterns that
support bidirectional interactions. These patterns serve as canon-
ical examples that allow us to measure the effects of resolution,
spacing, and axis configuration without confounding variables.

8.1 Datasets
We perform technical evaluations on a dataset containing 30 sets of
frames, where each frame is a 600 × 600 image. Within this, there
are 15 animations and 15 sets of black and white icon images, which
reflect the two primary ways to apply our method: frame-by-frame
animations and encoding multiple distinct images of any kind (not
necessarily from an animation) into the same surface.

Animations. Given the challenge of finding datasets with expressive
motion in a few frames, we selected 15 example animations, each
consisting of between 2 and 10 frames, sourced from Adobe Stock
and converted to grayscale.

Icons. The 15 sets of icons test the ability of our approach to encode
a wide variety of images with no inherent overlap in their black and
white regions. This dataset consists of 1,000 distinct vector graphic
icons from the Font Awesome solid icon pack, providing a robust
test of the method’s generalizability across diverse visual inputs.

8.2 Metrics
We assess the performance of our approach in simulation using
three error metrics to compare the rendered output frame 𝑅 to the
desired input frame 𝐼 .

MSE Loss. TheMean-Squared-Error (MSE)measures average squared
difference between the pixels of 𝑅 and 𝐼 , quantifying how much of
the desired image is visible or obscured by barriers. While MSE is
a good measure of pixel-wise accuracy, it falls short as a measure
of human perceptual error, as human perception involves far more
complex processes than simply analyzing individual pixels [41].

SSIM Loss. The Structural Similarity Index (SSIM) evaluates the
similarity between 𝑅 and 𝐼 , focusing on structural information,
contrast, and luminance, which aligns more closely with human
perception than does MSE. It is calculated as a product of three
factors: the linear correlation between images, an index of con-
sistency of mean luminance levels across images, and an index of
consistency of contrast levels across images [40]. SSIM values range
from −1 to 1, where 1 indicates perfect structural similarity.

Perceptual (VGG) Loss. To better align with human visual percep-
tion, we compute the VGG loss using the VGG-19 neural network,
comparing the feature maps extracted from images 𝑅 and 𝐼 at dif-
ferent layers of the network. These feature maps capture high-level
information, such as textures, patterns, and object shapes, which
are more representative of how humans perceive images compared
to simple pixel-based differences. We measure VGG loss as

VGG Loss =
∑︁
𝑙

∥𝜙𝑙 (𝐼) − 𝜙𝑙 (𝑅)∥22 ,

where 𝜙𝑙 represents the feature map extracted from layer 𝑙 of the
VGG-19 model. This loss quantifies differences in visual quality that
pixel-wise metrics like MSE often miss. We use the feature maps
from specific convolutional layers after max-pooling operations,
often referred to as “style layers,” with indices 𝐿 ∈ {0, 5, 10, 19, 28}
[35]. These layers focus on capturing higher-level abstractions, such
as texture and object recognition, which are crucial for measuring
perceptual quality.

8.3 Experimental Setup
For our technical evaluation, we calculate error metrics on ray-
traced results generated by a custom Python raytracing program.
Our evaluation uses view-dependent animations. To accurately
reveal the desired frame of interest in our evaluation, we incre-
mentally adjust the viewing direction. Specifically, we calculate the

FabObscura: Computational Design and Fabrication for Interactive Barrier-Grid Animations UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea

necessary angle for each adjustment such that the viewing direc-
tion shifts by exactly one slat per step, using principles of similar
triangles to determine the correct angles.

Figure 22 compares the outputs of our raytracer with a real fabri-
cated sample. We see strong correspondence between the simulated
and physical results, validating our rendering approach as a reliable
proxy for evaluating fabricated designs. Note that the black square
visible at the bottom of the real samples is an artifact caused by the
holding point during photography.

Figure 22: Top: Four photographs of a fabricated lattice sur-
face from four different viewing angles, taken from a dis-
tance of 20 inches. Bottom:Rendered results fromour Python
raytracer from the same viewing angles, using a simulated
viewing distance of 20 inches.

8.4 Results
Comparing Lattices to Slats. We begin by testing and comparing the
slats approach to the lattice grids approach. We fix the number of
frames for our test cases to 4, our barrier spacing (i.e., the thickness
of transparent units) to 3 pixels, and the front and back plane dis-
tance to 0.25 inches. We then use both slats and lattices to produce
a four-frame animation for each subset of our dataset (30 subsets
total), where the frames are vertically offset for slats and displayed
in a grid for lattices. Table 1 reports the mean, median, standard
deviation, lowest, and highest of each of our error metrics.

Table 1: Comparison of slats and lattices across different
error metrics.

Metric Approach Mean Median Std Dev Lowest Highest

MSE Slats 0.4214 0.4496 0.1448 0.0388 0.6752
Lattice 0.4334 0.4516 0.1438 0.0386 0.6889

SSIM Slats 0.2884 0.2896 0.2029 0.0011 0.7133
Lattice 0.1848 0.1867 0.1376 0.0006 0.4846

VGG Loss Slats 92.71 81.78 39.68 29.36 228.71
Lattice 95.43 86.73 38.89 25.04 230.81

We find that lattices and slats exhibit similar performance, although
lattices consistently have higher mean MSE and VGG Loss, and
a lower SSIM score. This is intuitively what we would expect, as
with the lattice approach more of the resulting rendered images are
obstructed due to having twice as many lines in the barrier than
with the slats approach. Therefore, while lattices provide more
flexibility for handling multiple axes of view at once, there is a
trade-off between this flexibility and the quality of results.

Effect of Barrier Spacing on AnimationQuality. Next, we investigate
how varying the barrier spacing influences the quality of our ani-
mations. Using our dataset, we run the process for barrier spacings
of 𝑛 pixels, for 𝑛 ∈ {1, . . . , 10}.

Figure 23 visualizes VGG loss as a function of barrier spacing
for both slats and lattices. For lower barrier spacings (1-4 pixels),
lattices exhibit high variance, but their overall performance is com-
parable to that of the slats. However, as barrier spacing increases
and the bars become thicker, the performance gap between the
two approaches widens significantly, with slats achieving nearly
half the VGG loss of lattices. This suggests that slats are more ro-
bust in maintaining quality as barrier spacings increase. Across
all barrier spacings, slats consistently also outperform lattices in
terms of lower MSE and higher SSIM. On average, slats achieve an
MSE of 0.4082 and SSIM of 0.3236, compared to lattices with an
average MSE of 0.4223 and SSIM of 0.2536, with the performance
gap widening as the spacing increases.

Figure 23: A comparison of VGG loss across different barrier
spacings (in pixels) for lattice and slat patterns. Mean VGG
loss increases significantly with higher barrier spacing for
lattices, while slats maintain a more consistent rate across
different spacings.

Effect of Changing the Frame Count. We further analyze the impact
of varying the number of frames in our test cases. Using a fixed
barrier spacing of 3 pixels, we evaluate two types of lattice barriers:
one that combines four frames arranged in a 2× 2 grid (i.e., nesting
two two-frame animations), and another that combines nine frames
arranged in a 3 × 3 grid (i.e., nesting three three-frame animations).
We exclude animations with fewer than nine frames from this study.

We additionally evaluate image quality for each configuration
using our established metrics and present them in Table 2. Our
findings indicate that the 3×3 configuration does not result in a
significant degradation in image quality compared to the 2×2 setup.

Effectiveness of Perspective Correction. To mitigate ghosting arti-
facts in view-dependent animations, our method rescales the inter-
laced image to maintain proper alignment with the barrier from a
specified viewing distance and layer separation.

UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea Sethapakdi et al.

Table 2: Comparison of 2×2 and 3×3 approaches across dif-
ferent error metrics.

Metric Approach Mean Median Std Dev Lowest Highest

MSE 2×2 0.4441 0.4583 0.1289 0.2194 0.6889
3×3 0.5196 0.5425 0.1505 0.1776 0.8121

SSIM 2×2 0.2079 0.2017 0.1350 0.0030 0.4846
3×3 0.2306 0.2211 0.1456 0.0028 0.5328

VGG Loss 2×2 86.27 85.20 11.97 61.45 109.19
3×3 73.82 73.16 11.23 46.76 112.31

Figures 24 and 25 qualitatively assess the impact of our perspective
correction method with our renderer. The bottom half of each plot
highlights how perspective correction enhances frame clarity and
minimizes ghosting artifacts. These improvements are particularly
pronounced at shorter rendering distances and in structures with
greater distances between layers.

9 Discussion
By understanding how barrier-grid animations can be constructed
through a unified mathematical framework, FabObscura enables
more expressive and complex animations than previously possi-
ble. This section discusses the design insights emerging from our
technical evaluation, acknowledges the limitations of our approach,
and outlines directions for future work.

9.1 Design Best Practices
Guided by our technical evaluation, we propose the following best
practices for constructing high-quality barrier-grid animations:

(1) Use high contrast designs with distinct silhouettes.
High-contrast designs with distinct silhouettes are versa-
tile because they are recognizable even as visual fidelity
decreases. This makes them well-suited for a variety of con-
structions, including nested configurations that tend to ex-
hibit lower fidelity than their non-nested counterparts.

(2) Use moderate barrier spacings for nested configura-
tions. Nested configurations exhibit high variance at lower
barrier spacings and degrading performance at higher spac-
ings. In singly-nested configurations, our evaluation shows
that the optimal spacing is roughly 0.5-0.8% of the design’s
width.

(3) For view-dependent animations, apply perspective cor-
rection for close viewing or thick structures.While it
is less critical when the viewing distance is large or the
layers are closely spaced, perspective correction becomes es-
pecially important at close range or when there is significant
separation between layers.

9.2 Limitations and Future Work
While FabObscura provides a foundation for designing barrier-grid
animations, the current prototype of the system does not exhaus-
tively cover the design space of our parameterization. For instance,
the interface can only nest two animations even though it is algo-
rithmically possible to create more complex constructions. Future
implementations could support deeper nesting hierarchies while
providing visualization tools to help users negotiate the design
trade-offs that accompany each additional layer.

One part of the design space that we do not explore in-depth
is the unit function representation. For example, rather than as-
suming that patterns have a fixed resolution throughout, we can
make the resolution vary depending on the pattern segment—or,
instead of assuming that unit functions are continuous lines, we
can depict them as a set of discrete shapes (Fig. 26). This opens
possibilities for more expressive pattern designs that cannot easily
be described by continuous functions alone. Future work could
investigate other representations for pattern units and explore their
visual and interactive affordances.

Finally, while our technical evaluation provides valuable quan-
titative insights into animation quality, it does not capture how
hyperparameter choices may affect user interaction. A compre-
hensive user study that qualitatively assesses the perceptual and
interactive impact of varying hyperparameters is a promising di-
rection for future work.

10 Conclusion
We presented FabObscura, a process for systematically designing
novel interactive barrier-grid animations. By recontextualizing
barrier-grid animations as parameterized mathematical functions,
FabObscura preserves the canonical properties of barrier-grid ani-
mations while giving them infinite expressivity.

One might wonder why it is important to revisit early art forms
like barrier-grid animations—after all, since their inception, there
have been centuries of developments in animation, display tech-
nologies, and dynamic materials. But in the sameway that early film
techniques continue to inform modern cinematography, barrier-
grid animations lay the foundation for modern processes such
as lenticular printing and autostereoscopic displays. Perhaps by
providing a process for making barrier-grid animations more ex-
pressive, we can also inspire new approaches for the technologies
that come after them.

Acknowledgments
We thank Josh Pollock, Dylan Wootton, and Matt Beaudouin-Lafon
for reviewing paper drafts and providing valuable feedback. We
also thank Lyvia Kenfack for their help with early prototypes of
the system.

References
[1] Lubna Abu Rmaileh and Alan Brunton. 2023. Meso-Facets for Goniochromatic

3D Printing. ACM Transactions on Graphics (TOG) 42, 4 (2023), 1–12.
[2] JA Arriaga-Hernández and A Jaramillo-Núñez. 2018. Ronchi and Moiré Patterns

for Testing Spherical and Aspherical Surfaces Using Deflectometry. Applied
Optics 57, 34 (2018), 9963–9971.

[3] Amit Bermano, Ilya Baran, Marc Alexa, and Wojciech Matusk. 2012. Shadowpix:
Multiple Images From Self Shadowing. In Computer Graphics Forum, Vol. 31.
Wiley Online Library, 593–602.

[4] Jimmy Chion. [n. d.]. Circular Moiré Slit Animation. http://www.instructables.
com/Circular-Moir%C3%A9-Slit-Animation/

[5] Stelian Coros, Bernhard Thomaszewski, Gioacchino Noris, Shinjiro Sueda, Moira
Forberg, Robert W Sumner, Wojciech Matusik, and Bernd Bickel. 2013. Compu-
tational design of mechanical characters. ACM Transactions on Graphics (TOG)
32, 4 (2013), 1–12.

[6] Jenna Didier. [n. d.]. The Spring. https://www.jennadidier.com/the-spring-aka-
swimming-with-sharks-dedicated-in-hollywood/

[7] Emin Gabrielyan. 2007. Fast optical indicator created with multi-ring moiré
patterns. (2007).

[8] Thomas RGGreen. 1989. Cognitive dimensions of notations. People and computers
V (1989), 443–460.

http://www.instructables.com/Circular-Moir%C3%A9-Slit-Animation/
http://www.instructables.com/Circular-Moir%C3%A9-Slit-Animation/
https://www.jennadidier.com/the-spring-aka-swimming-with-sharks-dedicated-in-hollywood/
https://www.jennadidier.com/the-spring-aka-swimming-with-sharks-dedicated-in-hollywood/

FabObscura: Computational Design and Fabrication for Interactive Barrier-Grid Animations UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea

Figure 24: Left: A four-frame animation without perspective correction (top) and with correction (bottom), viewed from a
distance of 80 inches. Right: the same animation viewed from 20 inches, where ghosting and artifacts are more prominent
without correction. All animations measure 2 × 2 inches, with a distance of 0.25 inches between the interlaced and back barrier
layers.

Figure 25: Left: A four frame animation without perspective correction (top), with a distance of 0.2 inches between the interlaced
(back) and barrier (front) layers. and 5. Right: the same animation with a distance of 5 inches between the interlaced and barrier
layers, where ghosting and artifacts are more prominent without correction. All animations measure 2 × 2 inches and are
viewed from a distance of 80 inches.

Figure 26: Beyond continuous functions, we can interlace im-
ages with discrete functions to create distinctive effects. Here,
we use a discretized sinusoidal function with star-shaped
points to encode a three-frame animation.

[9] Ollie Hanton, Mike Fraser, and Anne Roudaut. 2024. DisplayFab: The State
of the Art and a Roadmap in the Personal Fabrication of Free-Form Displays
Using Active Materials and Additive Manufacturing. In Proceedings of the CHI
Conference on Human Factors in Computing Systems. 1–24.

[10] Ollie Hanton, Zichao Shen, Mike Fraser, and Anne Roudaut. 2022. FabricatINK:
Personal Fabrication of Bespoke Displays Using Electronic Ink From Upcycled E
Readers. In Proceedings of the 2022 CHI Conference on Human Factors in Computing
Systems. 1–15.

[11] Stephen Herbert. 2010. The Optically Animated Artwork of
Rufus Butler Seder. Online. http://www.rufuslifetiles.com/
TheOpticallyAnimatedArtworkofRufusButlerSeder.pdf

[12] Yuhua Jin, Isabel Qamar, Michael Wessely, and Stefanie Mueller. 2020. Photo-
chromeleon: Re-programmable multi-color textures using photochromic dyes.
In ACM SIGGRAPH 2020 Emerging Technologies. 1–2.

[13] Sarah Anne Kushner, Paul H Dietz, and Alec Jacobson. 2022. Interactive 3D
Zoetrope with a Strobing Flashlight. In Adjunct Proceedings of the 35th Annual
ACM Symposium on User Interface Software and Technology. 1–3.

[14] Anat Levin, Daniel Glasner, Ying Xiong, Frédo Durand, William Freeman, Wo-
jciech Matusik, and Todd Zickler. 2013. Fabricating BRDFs at High Spatial
Resolution Using Wave Optics. ACM Transactions on Graphics (TOG) 32, 4 (2013),
1–14.

[15] Jiaji Li, Shuyue Feng, Maxine Perroni-Scharf, Yujia Liu, Emily Guan, Guanyun
Wang, and Stefanie Mueller. 2025. Xstrings: 3D Printing Cable-DrivenMechanism
for Actuation, Deformation, and Manipulation. In Proceedings of the 2025 CHI
Conference on Human Factors in Computing Systems (CHI ’25). Association for
Computing Machinery, New York, NY, USA, Article 6, 17 pages. https://doi.org/
10.1145/3706598.3714282

[16] Jiaji Li, Mingming Li, Junzhe Ji, Deying Pan, Yitao Fan, Kuangqi Zhu, Yue
Yang, Zihan Yan, Lingyun Sun, Ye Tao, and Guanyun Wang. 2023. All-in-One
Print: Designing and 3D Printing Dynamic Objects Using Kinematic Mech-
anism Without Assembly. In Proceedings of the 2023 CHI Conference on Hu-
man Factors in Computing Systems (Hamburg, Germany) (CHI ’23). Associa-
tion for Computing Machinery, New York, NY, USA, Article 689, 15 pages.
https://doi.org/10.1145/3544548.3581440

[17] Mightool. [n. d.]. Scanimation. http://www.mightool.com/scanimation/
[18] Leo Miyashita, Kota Ishihara, Yoshihiro Watanabe, and Masatoshi Ishikawa. 2016.

Zoematrope: A system for physical material design. In ACM SIGGRAPH 2016
emerging technologies. 1–1.

[19] Brad Myers, Scott E Hudson, and Randy Pausch. 2000. Past, present, and future of
user interface software tools. ACM Transactions on Computer-Human Interaction
(TOCHI) 7, 1 (2000), 3–28.

[20] Wakasa Noguchi and Hiroki Nishino. 2022. High-Low Tech Ombro-Cinéma. In
ACM SIGGRAPH 2022 Posters. 1–2.

http://www.rufuslifetiles.com/TheOpticallyAnimatedArtworkofRufusButlerSeder.pdf
http://www.rufuslifetiles.com/TheOpticallyAnimatedArtworkofRufusButlerSeder.pdf
https://doi.org/10.1145/3706598.3714282
https://doi.org/10.1145/3706598.3714282
https://doi.org/10.1145/3544548.3581440
http://www.mightool.com/scanimation/

UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea Sethapakdi et al.

[21] Colin Ord. 2007. Magic Moving Images: Animated Optical Illusions. Tarquin
Publications, London.

[22] Maxine Perroni-Scharf and Szymon Rusinkiewicz. 2023. Constructing Printable
Surfaces with View-Dependent Appearance. In ACM SIGGRAPH 2023 Conference
Proceedings. 1–10.

[23] Petar Pjanic and Roger D Hersch. 2015. Color Changing Effects With Anisotropic
Halftone Prints on Metal. ACM Transactions on Graphics (TOG) 34, 6 (2015), 1–12.

[24] Rechenraum. [n. d.]. Animbar. http://animbar.mnim.org/
[25] Kaisei Sakurai, Yoshinori Dobashi, Kei Iwasaki, and Tomoyuki Nishita. 2018.

Fabricating Reflectors for Displaying Multiple Images. ACM Transactions on
Graphics (TOG) 37, 4 (2018), 1–10.

[26] Gianni A. Sarcone. [n. d.]. Official Website of Gianni A. Sarcone. https://www.
giannisarcone.com/

[27] Gianni A. Sarcone. 2014. Rotating Kinegrams. https://www.behance.net/gallery/
17609995/Rotating-Kinegrams Accessed: 2025-03-11.

[28] Gianni A. Sarcone. n.d.. Kinegrams, Art in Motion. Online. http://giannisarcone.
com/Kinegrams.html From Sarcone’s Studio – A Sarcone & Waeber Web Re-
source.

[29] Rufus Butler Seder. 2001. Visual Display Device With Continuous Animation.
https://patents.google.com/patent/US6286873B1/en U.S. Patent No. 6,286,873.
Filed August 26, 1999, and issued September 11, 2001.

[30] Rufus Butler Seder. 2007. Gallop!: A Scanimation Picture Book. Workman Publish-
ing Company, New York.

[31] Ticha Sethapakdi, Laura Huang, Vivian Hsinyueh Chan, Lung-Pan Cheng, Fer-
nando Fuzinatto Dall’Agnol, Mackenzie Leake, and Stefanie Mueller. 2023. Po-
lagons: Designing and Fabricating Polarized Light Mosaics with User-Defined
Color-Changing Behaviors. In Proceedings of the 2023 CHI Conference on Human
Factors in Computing Systems. 1–14.

[32] Ticha Sethapakdi, Mackenzie Leake, Catalina Monsalve Rodriguez, Miranda J
Cai, and Stefanie Mueller. 2022. KineCAM: An Instant Camera for Animated
Photographs. Proceedings of the ACM on Computer Graphics and Interactive
Techniques 5, 4 (2022), 1–9.

[33] Ticha Sethapakdi, Paris Myers, Tianyu Yu, Juliana Covarrubias, Mackenzie Leake,
and Stefanie Mueller. 2024. Thermochromorph: Dynamic Relief Printing with
Thermochromic Inks. In SIGGRAPH Asia 2024 Art Papers (SA ’24). Association
for Computing Machinery, New York, NY, USA, Article 11, 7 pages. https:
//doi.org/10.1145/3680530.3695445

[34] Pengfei Shen, Rui-Zeng Li, Beibei Wang, Ligang Liu, and Tao Zhuang. 2023.
Scratch-based Reflection Art via Differentiable Rendering. ACM Trans. Graph.
42, 4 (2023), 65–1.

[35] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional Net-
works for Large-scale Image Recognition. arXiv preprint arXiv:1409.1556 (2014).

[36] Xavier Snelgrove, Thiago Pereira, Wojciech Matusik, and Marc Alexa. 2013.
Parallax Walls: Light Fields From Occlusion on Height Fields. Computers &
graphics 37, 8 (2013), 974–982.

[37] Motiform Studio. [n. d.]. Human Walking Scanimation Clock Face.
https://makerworld.com/en/models/905999-human-walking-scanimation-
clock-face#profileId-866116

[38] F.J. Vernay. 1898. The Motograph Moving Picture Book. Bliss, Sands, London.
[39] Robin A Walker. 2013. Holograms as Teaching Agents. In Journal of Physics:

Conference Series, Vol. 415. IOP Publishing, 012076.
[40] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. 2004. Image Quality

Assessment: From Error Visibility to Structural Similarity. In IEEE Transactions
on Image Processing, Vol. 13. 600–612.

[41] Zhou Wang and Alan C Bovik. 2009. Mean Squared Error: Love It or Leave It?
A New Look at Signal Fidelity Measures. IEEE signal processing magazine 26, 1
(2009), 98–117.

[42] Jennifer Weiler. 2020. Beyond Plastic Filament: An Exploration of 3D Printing as a
Part of Creative Practices. Ph. D. Dissertation. Arizona State University.

[43] Gordon Wetzstein, Douglas Lanman, Wolfgang Heidrich, and Ramesh Raskar.
2011. Layered 3D: Tomographic Image Synthesis for Attenuation-based Light
Field and High Dynamic Range Displays. In ACM SIGGRAPH 2011 papers. 1–12.

[44] Takumi Yamamoto and Yuta Sugiura. 2023. Turning Carpets Into Multi-image
Switchable Displays. Computers & Graphics 111 (2023), 190–198.

[45] Zeyu Yan, Hsuanling Lee, Liang He, and Huaishu Peng. 2023. 3D Printing
Magnetophoretic Displays. In Proceedings of the 36th Annual ACM Symposium on
User Interface Software and Technology. 1–12.

[46] Takegi Yoshimoto, Shuto Murakami, and Homei Miyashita. 2023. Edible Lenticu-
lar Lens Design System. In Adjunct Proceedings of the 36th Annual ACM Sympo-
sium on User Interface Software and Technology (San Francisco, CA, USA) (UIST
’23 Adjunct). Association for Computing Machinery, New York, NY, USA, Article
21, 3 pages. https://doi.org/10.1145/3586182.3616656

[47] Qing Yu, Bao-min Li, and Qi-yun Wang. 2024. The Effectiveness of 3D Holo-
graphic Technology on Students’ Learning Performance: A Meta-analysis. Inter-
active Learning Environments 32, 5 (2024), 1629–1641.

[48] Tianyu Yu, Weiye Xu, Haiqing Xu, Guanhong Liu, Chang Liu, Guanyun Wang,
and Haipeng Mi. 2023. Thermotion: Design and Fabrication of Thermofluidic
Composites for Animation Effects on Object Surfaces. In Proceedings of the 2023
CHI Conference on Human Factors in Computing Systems. 1–19.

[49] Daniel Campos Zamora, Mustafa Doga Dogan, Alexa F Siu, Eunyee Koh, and
Chang Xiao. 2024. MoiréWidgets: High-Precision, Passive Tangible Interfaces
via Moiré Effect.. In CHI. 329–1.

[50] Jiani Zeng, Honghao Deng, Yunyi Zhu, Michael Wessely, Axel Kilian, and Stefanie
Mueller. 2021. Lenticular Objects: 3D Printed Objects with Lenticular Lens
Surfaces That Can Change Their Appearance Depending on the Viewpoint. In
The 34th Annual ACM Symposium on User Interface Software and Technology.
1184–1196.

[51] Yunyi Zhu, Cedric Honnet, Yixiao Kang, Junyi Zhu, Angelina J Zheng, Kyle
Heinz, Grace Tang, Luca Musk, Michael Wessely, and Stefanie Mueller. 2024.
PortaChrome: A Portable Contact Light Source for Integrated Re-Programmable
Multi-Color Textures. In Proceedings of the 37th Annual ACM Symposium on User
Interface Software and Technology. 1–13.

http://animbar.mnim.org/
https://www.giannisarcone.com/
https://www.giannisarcone.com/
https://www.behance.net/gallery/17609995/Rotating-Kinegrams
https://www.behance.net/gallery/17609995/Rotating-Kinegrams
http://giannisarcone.com/Kinegrams.html
http://giannisarcone.com/Kinegrams.html
https://patents.google.com/patent/US6286873B1/en
https://doi.org/10.1145/3680530.3695445
https://doi.org/10.1145/3680530.3695445
https://makerworld.com/en/models/905999-human-walking-scanimation-clock-face#profileId-866116
https://makerworld.com/en/models/905999-human-walking-scanimation-clock-face#profileId-866116
https://doi.org/10.1145/3586182.3616656

	Abstract
	1 Introduction
	2 Related Work
	2.1 Fabricating Visually Dynamic Objects
	2.2 Occlusion-Based Visual Effects
	2.3 Applications of Dynamic Physical Media

	3 Background: Barrier-Grid Animations
	3.1 Basic Construction
	3.2 Sliding Animations
	3.3 View-Dependent Animations
	3.4 Rotational Animations
	3.5 Canonical Properties

	4 Design Space
	4.1 Parameterizing Patterns
	4.2 Nesting Animations

	5 FabObscura: Towards Computationally Designing Barrier-Grid Animations
	5.1 Designing Animations
	5.2 Interacting with Animations
	5.3 Experimenting with Nested Animations
	5.4 Outputs

	6 Applications
	6.1 Objects with Reconfigurable Appearances
	6.2 Responsive Design
	6.3 Multimodal Interactions

	7 Implementation
	7.1 Visualization
	7.2 Constructing Linear Animations
	7.3 Constructing Rotational Animations
	7.4 Nesting Animations

	8 Technical Evaluation
	8.1 Datasets
	8.2 Metrics
	8.3 Experimental Setup
	8.4 Results

	9 Discussion
	9.1 Design Best Practices
	9.2 Limitations and Future Work

	10 Conclusion
	Acknowledgments
	References

