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Abstract. To improve the reliability of machine learning models, re-
searchers have developed metrics to measure the alignment between
model saliency and human explanations. Thus far, however, these saliency-
based alignment metrics have been used to conduct descriptive analy-
ses and instance-level evaluations of models and saliency methods. To
enable evaluative and comparative assessments of model alignment, we
extend these metrics to compute explanation alignment —the aggregate
agreement between model and human explanations. To compute explana-
tion alignment, we aggregate saliency-based alignment metrics over many
model decisions and report the result as a performance metric that quan-
tifies how often model decisions are made for the right reasons. Through
experiments on nearly 200 image classification models, multiple saliency
methods, and MNIST, CelebA, and ImageNet tasks, we find that expla-
nation alignment automatically identifies spurious correlations, such as
model bias, and uncovers behavioral differences between nearly identical
models. Further, we characterize the relationship between explanation
alignment and model performance, evaluating the factors that impact
explanation alignment and how to interpret its results in-practice.
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1 Introduction

Saliency methods, or feature attribution methods, are a class of explainable AI
techniques used to interpret machine learning model decisions [41, 58, 61] in
domains from object classification [10, 11, 50] to radiology [3, 48, 57, 70]. Given
an image, saliency methods explain model behavior by estimating the importance
of each input feature (e.g., RGB pixel) to the model’s decision, which humans
compare against their expectations. However, this process is tedious, requiring
manual analysis of each dataset instance. Thus, saliency interpretation is often
limited to a few manually reviewable instances and can result in missed insights,
cherry-picked analysis, and an incomplete understanding of model behavior [8].

To leverage saliency methods without manual inspection, researchers have
designed saliency-based alignment metrics that quantify the agreement between
model and human explanations [8, 57, 71]. For a given image, these metrics
compare the features salient to the model against a ground truth annotation of
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features important to a human. The result is a quantitative value representing
how well the model’s decision-making process on that instance aligns with hu-
man expectations. Thus far, these metrics have been used for qualitative model
evaluations [8] and evaluations of new saliency methods [15, 42, 50, 71].

While saliency-based alignment metrics have proven useful for observing
model behavior on particular data instances, they have never been used to pro-
vide evaluative or comparative assessments of model alignment. As a result, they
are often only invoked during qualitative assessments of model behavior [8] and
are excluded from quantitative performance analysis. However, using saliency-
based alignment metrics to quantify the human alignment of model behavior
across many decisions could provide insight into whether the model consistently
makes decisions for the right reasons. Moreover, since even highly accurate mod-
els can rely on spurious correlations [11, 44], large-scale application of these
metrics could distinguish deployable models from those that are misaligned.

Building on the success of saliency-based alignment metrics, we use them
to compute explanation alignment — the aggregate agreement between model
explanations and human expectations. To do so, we aggregate the results of
saliency-based alignment metrics over many model decisions and report the re-
sult as a quantitative performance metric alongside traditional task-specific per-
formance metrics. To generate a comprehensive understanding of explanation
alignment, we use two common saliency-based aligned metrics — Shared Inter-
est [8] and The Pointing Game [71] — to measure the alignment of the model’s
entire explanation as well as its most important feature. The result is a quantita-
tive alignment value, that, when used alongside traditional performance metrics,
provides a more complete picture of a model’s decisions and reasoning.

On computer vision classification tasks, explanation alignment uncovers model
bias and reveals substantial reasoning differences between highly accurate mod-
els1. Explanation alignment automatically exposes model biases stemming from
synthetic spurious correlations in MNIST [18] and naturally-occurring distribu-
tional biases in CelebA [37]. By comparing model and human explanations, it
identifies biases without exhaustive validation or prior knowledge of their ex-
istence, enabling us to refine the models, remove their bias, and improve their
generalizability. In settings with multiple valid human explanations, explanation
alignment exposes models’ reasoning processes, revealing otherwise impercepti-
ble differences between models with nearly identical performance, architectures,
and training set ups. Finally, to support the use of explanation alignment in prac-
tice, we characterize its behavior across 195 ImageNet [17] classification models
using varying architectures, saliency methods, and tasks.

2 Related Work

AI alignment measures the extent to which machine learning models’ behaviors
and outcomes are consistent with human expectations [28, 63, 65] and is crucial

1 Code: https://github.com/mitvis/explanation_alignment.
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for building reliable models that safely operate in real-world applications [4,
22, 36, 60, 68]. Thus far, research measuring AI alignment has analyzed how
closely a model’s internal representations match human cognitive processes [31,
46, 52] or its output decisions match human errors [25, 26, 43]. Explanation
alignment expands on these alignment by comparing features important to the
model against human explanations, providing a complementary quantification
that is efficient to compute and human-understandable.

Another line of research has focused on using model explanations to improve
the alignment of AI models [53] by designing explanation-based loss terms [23,
55, 56], incorporating explanations into model architectures [35], and using inter-
active human feedback [24]. These efforts have established a strong foundation
for using AI explanations in alignment research. However, rather than influenc-
ing model behavior directly, we introduce a scalable approach to assess how well
existing models’ explanations align with human reasoning across multiple tasks.

To compute explanation alignment, we compute model explanations using
saliency methods [3, 9–11, 15, 20, 29, 39, 41, 48, 50, 54, 57, 58, 62, 70]. They
offer an advantage by defining model explanations over the input image, mak-
ing it simple to compare to existing human explanations in the form of image
annotations. Further, given the diversity of saliency methods (e.g., gradient-
based [29, 62, 64], black-box [12, 50], architecture-specific [10, 14, 15, 59]), we
can compute explanation alignment for many modelling tasks.

Given a model explanation and a human explanation, we compute explana-
tion alignment by leveraging existing saliency-based alignment metrics. Saliency-
based alignment metrics refer to methods for comparing the overlap between a
saliency map and a human explanation [8, 57, 71]. These methods help users
efficiently evaluate saliency maps [8] and the localization ability of new saliency
methods [9, 42, 57, 71]. While prior work has utilized these metrics to evalu-
ate the effectiveness of explanation methods [2, 30, 45], we re-purpose them to
conduct comparative and evaluative analyses of model behavior at scale, across
varying datasets and model architectures.

3 Method

To compute explanation alignment, we quantify the alignment between human
and model explanations and aggregate it over many decisions. We extract human
explanations from ML datasets (Sec. 3.1) and compute model explanations using
saliency methods (Sec. 3.2). We use these human and model explanations to com-
pute instance-wise alignment using saliency-based alignment metrics (Sec. 3.3).
Then, we aggregate these alignment metrics over an entire dataset and report
the result as the model’s explanation alignment (Sec. 3.4).

3.1 Representing Human Explanations

To compute the human alignment of model explanations, we need a compatible
representation for human explanations on the same decision-making tasks. Since
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saliency methods operate over the image features, we also define human expla-
nations on the image space. Specifically, we treat human explanations as binary
masks, where image features within the mask are considered important to the
human decision and features outside the mask are unimportant. While model
explanations assign importance to every image feature (i.e., the color channel for
each pixel), we define human explanations on the pixel level since, for humans,
channel values are visually aggregated into a single perceivable color. Given an
image I ∈ [0, 255]c×m×n where c is the number of color channels and m and n are
the height and width, the human explanation is defined as H ∈ {0, 1}m×n. For
instance, to compute the explanation alignment on MNIST digits in Sec. 4.1, the
human explanation includes every pixel in the digit and excludes the black back-
ground. This representation allows us to directly compare the model explanation
to the human explanation on a feature-by-feature basis.

Often, human explanations exist or can be extracted from existing datasets.
For instance, our experiments use the bounding box annotations included with
ImageNet [17], which define regions in the image containing the object label.
Even when exact explanations do not exist, we can often infer them using avail-
able dataset information. For example, our experiments on CelebA [37] smile
prediction use existing annotations of the left and right mouth points to define
a human explanation region around the mouth. Similarly, since MNIST [18] im-
ages are a white foreground digit on a black background, we define the human
explanation mask by thresholding the image pixel values and selecting the region
corresponding to the digit. In cases where the human explanation can not be
extracted or inferred, image segmentation or object localization models could
extract object regions as the human explanation, or human annotators could
manually annotate regions for high-stakes domains, like medical imaging.

3.2 Generating Model Explanations

To compute the model’s explanation alignment, we compute its explanations
using saliency methods. Saliency methods compute a continuous score for each
input feature, representing its importance to the model’s decision. The result is
a saliency map S ∈ [0, 1]c×m×n that represents the model’s explanation. Since
saliency outputs operate over the input space, they are easily comparable to the
human explanation. Further, given the variety of saliency methods, we can com-
pute explanation alignment for a variety of models, including black-box or non-
gradient-based models. In our experiments, we use Grad-CAM [59] and Vanilla
Gradients [61], two prominent saliency methods.

3.3 Measuring Instance-Wise Alignment

We compute the human alignment of a model’s decision by comparing its saliency
to the human explanation. To do so, we leverage existing saliency-based align-
ment methods that quantify the relationship between the human and model
explanations. While saliency-based alignment methods were originally designed
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to support qualitative model analysis [8] and evaluate saliency methods [71], we
repurpose them to quantify the model’s explanation alignment on a given image.

We use two common saliency-based alignment metrics —Shared Interest [8]
and The Pointing Game [71]. Shared Interest defines alignment by quantify-
ing the intersection-over-union (IoU) of the model and human explanations. To
compute IoU, we must discretize the model’s importance scores into regions (see
Sec. 4 for details). We then sum the model explanation over the channel dimen-
sion to get an importance score per pixel. After discretization and aggregation,
we have a model explanation S′ ∈ {0, 1}m×n that is in the same format as the
human explanation H. We compute IoU [8] for each dataset instance i:

IoUi =
|Hi ∩ S′

i|
|Hi ∪ S′

i|
(1)

This value represents the similarity between human and model explanations,
ranging from 0 (disjoint) to 1 (identical).

To complement IoU, we also use The Pointing Game metric (PG) [71] to
compute model-human alignment. The Pointing Game defines alignment based
on whether the model’s most important feature is a human-important feature.
Unlike IoU, which compares the similarity of the two explanations, The Pointing
Game only checks if the model’s most salient feature aligns with the human
explanation. Following Zhang et al. [71], we compute PG as:

PGi = 1Hi
b′,c′

=1 where (a′, b′, c′) = argmax
(a,b,c)

Sia,b,c
(2)

The result is either 0 or 1, where 1 indicates the model’s most important feature
is human-aligned and 0 indicates it is not.

Using both IoU and PG as saliency-based alignment metrics provides comple-
mentary insight into the model’s behavior — IoU evaluates the entire explanation
and PG focuses on specific key features. In cases where the model’s explanation
relies on a subset of the human important features (i.e., only part of the object),
IoU will penalize the alignment for not precisely matching the human, whereas
PG accounts for precise explanations. On the other hand, IoU is more robust
to noisy saliency maps that mostly focus on the object but assign importance
to one-off features. Using both metrics provides a clearer understanding of the
model’s decision-making processes.

3.4 Computing Explanation Alignment

Finally, to compute explanation alignment, we aggregate a model’s instance-wise
alignment over an entire dataset. As a result, explanation alignment provides a
single quantitative value representing how frequently the model’s behavior aligns
with human expectations over many decisions. Given a model and dataset of N
instances to evaluate explanation alignment on, we create human explanations H
(Sec. 3.1) for each dataset instance. Next, given a saliency method, we compute
the model’s explanations S (Sec. 3.2) for every dataset instance. Finally, given
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a saliency-based alignment method A (Sec. 3.3), we compute the instance-wise
alignment for every dataset instance and average the result.

EAA =
1

N

N∑
i=1

Ai (3)

We compute the explanation alignment using both Shared Interest IoU (EAIoU)
and The Pointing Game (EAPG). The resulting metrics represent the overall
alignment of the model’s explanations.

4 Experiments and Results

We demonstrate how explanation alignment can reveal spurious correlations
(Sec. 4.1), uncover model bias (Sec. 4.2) and expose differences in model reason-
ing Sec. 4.3). In Sec. 4.4, we characterize practical considerations of explanation
alignment through a study on 195 image classification models.

4.1 Uncovering Spurious Correlations in a Controlled Setting

In ML datasets, spurious correlations— irrelevant features that appear causally
related to the outcome —can lead to models that rely on meaningless or biased
features and produce unreliable results [72]. However, spurious correlations are
difficult to detect using traditional performance metrics because they are arti-
facts of the data, meaning models that learn them can often achieve equal or
better dataset performance than models that rely on human-aligned features.
To detect spurious correlations, model developers often rely on manual analysis
of model explanations [11] or additional evaluations on new datasets or curated
dataset splits that test for a specific spurious correlation [7, 69].

With explanation alignment, we can identify spurious correlations by quan-
tifying the alignment between model explanations and human reasoning across
an entire dataset. Unlike other approaches, applying these metrics in aggregate
does not require manual analysis of model explanations or a priori knowledge
of the types of spurious correlations to test for. Models with high explanation
alignment scores consistently rely on human salient features, whereas low align-
ment scores indicate the model uses features disjoint from human reasoning. In
experiments, explanation alignment identifies spurious correlation in otherwise
indistinguishably accurate models on MNIST [18, 33] and CelebA [37] tasks.

To demonstrate how explanation alignment detects spurious correlations, we
apply it to measure the alignment of two equally performant MNIST models [33]:
one using a spurious correlation and one human-aligned. To introduce a spurious
correlation, we adopt a method similar to DecoyMNIST [56], augmenting the
MNIST dataset by adding a 5 × 5 colored square in the top-left corner of each
image (see Fig. 1). Placing the color outside the digit enables us to use saliency
maps to distinguish between the explanations for the digit and the spurious
color. Then we create two versions of our augmented MNIST dataset: a spurious
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Table 1: Explanation alignment helps detect spurious correlations. In an augmented
MNIST setting, we train two models: not-spurious uses the digit to make its deci-
sion and spurious that learns a spurious correlation between color box and the digit.
Both model’s achieve similar accuracy on the test set (spurious); however, explana-
tion alignment reveals that the not-spurious model relies heavily on the digit features,
whereas the spurious model primarily relies on the color box correlation. We compute
EAIoU and EAPG using Vanilla Gradients [61] explanations thresholded at one stan-
dard deviation above the mean and the MNIST digit as the human explanation.

Test Set Accuracy Digit Color Box
Model not-spurious spurious EAIoU EAPG EAIoU EAPG

not-spurious 0.981 0.981 0.294 0.699 0.001 0.000
spurious 0.461 0.996 0.087 0.048 0.222 0.937

dataset where square color correlates with the digit (i.e., 0s have a red square,
1s have an orange square, etc.) and a not-spurious dataset with randomized
colors and no correlation. The spurious dataset simulates a real dataset we
might use to train our model that contains both the human-aligned correlation
(digit features) as well as spurious correlation (box color). Models trained on the
not-spurious dataset must learn a correlation between features of the digit to
make correct predictions, whereas models trained on the spurious dataset can
learn to use either features of the digit or the color of the box. For each dataset,
we train a simple CNN to classify the digits— a spurious model trained on
spurious dataset and a not-spurious model trained on the not-spurious
dataset (details in Appendix A.2).

First, we confirm that the models have learned their intended feature cor-
relations by evaluating them on the spurious and not-spurious test splits in
Tab. 1. Both models can classify the digits accurately and achieve over 98%,
accuracy on the spurious dataset. However, when we synthetically remove the
spurious correlation (i.e., not-spurious dataset), the spurious model experi-
ences a 53% drop in accuracy, confirming its reliance on the spurious correlation.

Explanation alignment reveals spurious correlations automatically by testing
their reliance on human salient features, unlike accuracy-based methods that
require prior knowledge of the correlation to manually curate the not-spurious
dataset. For each model, we measure its EAIoU and EAPG on the spurious
dataset, which simulates a real world spurious correlation detection task. We use
the MNIST digit as the ground truth region (Tab. 1) and the Vanilla Gradients
saliency method [61] thresholded at one standard deviation above the mean
(additional details in Appendix A.3). While the not-spurious model focuses on
the digit in 69.9% of test instances, the spurious model does so in only 4.8%.
This is shown in Fig. 1, where the not-spurious model’s explanation focuses
on the digit, while the spurious model’s explanation focuses on the color block.

Explanation alignment reveals misalignment without the need to hypothesize
possible spurious correlations in advance; however, when a known spurious cor-
relation exists, explanation alignment can explicitly measure a model’s reliance
on it. To demonstrate this, we measure the EAIoU and EAPG of both models on
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Fig. 1: Explanation alignment measures the human alignment of model decisions. In
an MNIST image classification task, it quantifies the not-spurious model’s reliance on
human-aligned features of the digit and a spurious model’s dependence on the spurious
correlation between the color block and the digit. We show Vanilla Gradients [61]
explanations thresholded at one standard deviation above the mean.

the not-spurious dataset. In this instance, we utilize the color box region as
the "human explanation" to quantify how frequently the model depends on the
known spurious feature (i.e., color). In Tab. 1, we see that the not-spurious
model rarely relies on the color block features (EAIoU = 0.001; EAPG = 0%),
whereas the spurious model’s most important feature is in the color box in
93.7% of instances. These results confirm that the spurious model’s lack of hu-
man alignment stems from reliance on the color box spurious correlation, which
should be removed or regularized during training.

4.2 Revealing Model Bias in Face Classification Models

Biases can also manifest as spurious correlations, where a model learns to as-
sociate a meaningful but irrelevant feature (e.g., race) with its prediction (e.g.,
job offer) [5, 16]. One way bias can enter a ML pipeline is during dataset col-
lection when one population is overrepresented, causing an unintended correla-
tion between that population and the outcome. Like other spurious correlations,
identifying bias is challenging as it often requires a priori knowledge of potential
biases and manual test procedures, such as computing accuracy on different test
splits that represent potential sources of bias [5, 19].

Using explanation alignment, we can identify model biases without know-
ing the possible biased features ahead of time. In this experiment, we use EAIoU
and EAPG to identify bias in a CelebA smile classification model [37]. In CelebA,
there is a preexisting bias between the person’s hair and whether they are smil-
ing, where people with black hair are more likely to be smiling than people
with blond hair. To replicate this bias, we filter the CelebA dataset to images
that have a black or blond hair attribute and create a biased dataset contain-
ing a bias towards black hair and smiling. The dataset contains equal numbers
of black and blond hair images, with a 100:1 bias in the training split and a
10:1 bias in the test split. The biased dataset represents the original dataset we
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Table 2: Explanation alignment can help detect model bias. In a CelebA smile predic-
tion task, we train an unbiased model that sees equal proportions of black ( ) and
blond ( ) hair that are smiling ( )and not smiling ( ) and a biased model that
contains a bias towards black hair and smiling. Both models achieve similar accu-
racy on the test set (biased). However, explanation alignment reveals that the biased
model almost never relies on the human-aligned mouth features. We compute EAIoU

and EAPG using GradCAM [59] model explanations thresholded at 0.5 and the mouth
annotation as the human explanation.

Test Set Accuracy
Model biased unbiased EAIoU EAPG

unbiased 0.918 0.924 0.908 0.950 0.920 0.912 0.175 0.263
biased 0.936 0.662 0.997 0.150 0.470 0.998 0.005 0.000

would use to train and test our models, where a bias exists that the model may
learn. In addition, we create an unbiased dataset where black and blond images
are depicted as smiling and not smiling in equal proportions, representing a
curated test set we might use to test bias in our models or train a model that is
unbiased. We train two, equally performant models on these datasets, creating
a biased model and an unbiased model. For both models, we finetune an Im-
ageNet [17] pre-trained ResNet50 [27] on the CelebA smile prediction task [37].
Both models achieve over 90% accuracy on our biased test set (Tab. 2).

In bias identification task, model developers test models on datasets without
potential biases. In this setting, we know a correlation exists between hair color
and smiling, so we can evaluate models on an unbiased dataset and intersec-
tional data splits. In Tab. 2, we see that while both the unbiased and biased
models achieve similar performance on our original dataset (biased), the biased
model has learned to make predictions using the hair color bias. It achieves near
perfect accuracy on our high frequency subgroups, ( and ); however, it
is worse than random guessing on the low frequency subgroups ( and ).

However, while identifying bias through subgroup accuracy required us to
hypothesize the biased variable and create dataset splits, explanation alignment
can reveal a bias problem without additional labor. We compute the explanation
alignment by comparing the models’ explanations against features known to be
important to smile prediction (i.e., a person’s mouth). We use the CelebA mouth
annotation to create a ground truth region and compute Grad-CAM saliency [59]
towards the predicted class (Fig. 2) for each instance. We compute explanation
alignment across the entire biased test set and report the results in Tab. 2.
Despite achieving 93.6% accuracy, the biased model never relies on the features
of the mouth (PG = 0%) to predict whether a person is smiling, suggesting it
is using a biased or spurious correlation to make its predictions. On the other
hand, the unbiased model’s most important feature is within the mouth region
in 26.3% of instances, suggesting it has learned some causal features between
mouths and smiling.

Confirming the numerical results, examples from the dataset in Fig. 2 show
that the biased model’s explanations often contain features related to hair color,
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Fig. 2: Explanation alignment can identify model biases. In a CelebA smile prediction
task it reveals that the biased model has learned the dataset bias between smiling
and hair color, whereas the unbiased model has not. We show GradCAM [59] ex-
planations thresholded at 0.5.

like a person’s hair or eyebrow, whereas the unbiased model primarily focuses
on features from the mouth. However, the unbiased model’s explanation also
contains parts of a person’s cheeks and eyes, suggesting where it may be looking
in the other 73.7% of instances. While cheeks and eyes are not mechanically
related to a smile the way a mouth is, they are equally causal and as humans
we can determine if someone is smiling by looking at the rest of their face. If we
would like to expand the notion of a smiling ground truth in future iterations
of analysis, we could include a person’s entire face in the ground truth region.
Or, if mouth features are particularly important to the task, such as emotion
prediction in people with facial paralysis, then we may want to further improve
our model to enforce mouth features as the only ones that are causal.

4.3 Exposing Behavioral Differences in Highly Accurate Models

We want to ensure that our model uses human-aligned features to make its de-
cisions; however, there are often many possible correlations a model can learn
that align with human reasoning. For instance, as humans, we can detect that
someone is smiling by looking at their mouth, eyes, cheeks or a combination of
those features. Evaluating a model’s alignment against all possible human expla-
nations tells us more about our model and ensures that we do not inadvertently
penalize it for relying on different but equally human-aligned features.

To represent explanation alignment’s ability to provide a comprehensive
overview of model behavior, we apply it to a setting with multiple human ex-
planations. Following our experimental set up in Sec. 4.2, we train three model
replicates on the unbiased CelebA dataset [37]. We compute model explana-
tions using Grad-CAM [59] towards the model’s predicted class and threshold
it at 0.5. However, this time we compute the alignment metrics with respect to
five possible explanations from CelebAMask-HQ [34]— the person’s hair, eyes,
mouth, nose, and skin. We report the EAIoU and EAPG on the CelebA test set
for each human explanation and report the results in Tab. 3.
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Table 3: Explanation alignment uncovers model behavior differences obscured by ac-
curacy. On three CelebA smile prediction models with similar accuracy, explanation
alignment reveals that A relies on the mouth, B focuses on the nose, and C uses both.
We compute EAIoU and EAPG using GradCAM [59] thresholded at 0.5 and compare
to multiple face region annotations from CelebAMask-HQ [34].

EAIoU EAPG
Model Accuracy Hair Eye Mouth Nose Skin Hair Eye Mouth Nose Skin

A 0.93 0.0024 0.0000 0.3120 0.0802 0.1310 0.0009 0.0000 0.8402 0.0197 0.9937
B 0.92 0.0007 0.0607 0.0215 0.2370 0.2360 0.0015 0.0244 0.0018 0.5434 0.9997
C 0.93 0.0058 0.0332 0.1510 0.1720 0.2010 0.0020 0.0125 0.3896 0.2978 0.9994

While the models are indistinguishable by accuracy (each achieving 92–93%),
explanation alignment reveals that they use significantly different facial features
to predict whether a person is smiling. While model A relies on features of the
mouth, model B almost never relies on the features of the mouth, instead focus-
ing more on the person’s nose, and model C uses both features of the mouth and
nose. These findings are further supported by visual examples (Fig. 3), where
we see that model A’s saliency map highlights the mouth, model B’s focuses on
the nose, and model C relies on the majority of the face. While all three models
have high alignment with the skin and low alignment with the eyes, this is likely
due to the size of those ground truth features. For instance, given the skin is a
superset of the regions, EAPG will count alignment with the skin region even if
the feature was within a more specific region like mouth.

By highlighting the differences in the model’s behavior, alignment metrics can
help us make more informed decisions between the models. If we were applying
this model in a setting where we expect people to be wearing masks, then we may
want to choose a model that relies on facial features besides the mouth. It can
also provide an opportunity to assemble an ensemble of models, each focusing
on a unique valid ground truth feature, resulting in a more effective and resilient
model against facial obfuscations.

4.4 Characterizing Explanation Alignment

While our previous experiments demonstrate how explanation alignment can
be used to evaluate and compare model reasoning, this experiment focuses on
characterizing the factors that influence explanation alignment. In particular, we
compute explanation alignment on 195 image classification models, evaluating
how choice of saliency method, model architecture, explanation alignment met-
ric, and evaluative task influence the results. In doing so, we identify important
considerations when interpreting explanation alignment in practice.

To analyze explanation alignment at scale, we compute the explanation align-
ment of 195 TIMM2 ImageNet [17] classification models with varying architec-
tures (e.g., CNNs, Transformers), sizes (ranging from 1–200 million parameters),
and performance levels (>25% accuracy range). We calculate EAIoU and EAPG
for each model using the ImageNet validation set and its bounding box explana-
tions [17]. We use Vanilla Gradients [61] thresholded at one standard deviation
2 https://timm.fast.ai/

https://timm.fast.ai/
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Fig. 3: Measuring explanation alignment using multiple human explanations shows
that similarly accurate models use different underlying facial features. We compare
GradCAM [59] explanations thresholded at 0.5 against 5 facial annotations [34].

above the mean across all models and Grad-CAM [59] thresholded at 0.5 on
the 150 models containing convolutional layers. We compare the explanation
alignment against the model’s accuracy on the ImageNet validation set and its
transfer learning performance on CIFAR-100 [32]. We perform 1-shot transfer
learning via a logistic regression that takes in the models’ penultimate layer
embeddings and predicts the CIFAR-100 labels. We report our results in Fig. 4.

Explanation alignment differs based on model architecture. Across settings, the
range of explanation alignment values differ based on model architecture. Trans-
formers [67] have lower explanation alignment scores than CNNs [21]. For a direct
comparison, we use the same saliency method (Vanilla Gradients) to compute
explanation alignment for all models, regardless of architecture. However, due
to the patch-based tokenization procedure of Image Transformers [47], Vanilla
Gradients often highlights rectangular image regions as opposed to continuous
saliency distributions we see in CNNs (Fig. A2). Since the model explanations
have a different distribution for Transformers than CNNs, the explanation align-
ment scores are not directly comparable between model architectures.

Explanation alignment is sensitive to the underlying saliency method. Differences
in saliency methods result in differences in explanation alignment values. Com-
puting explanation alignment with Vanilla Gradients results in EAIoU scores in
the range 0–0.2, whereas with Grad-CAM scores range from 0.1–0.6. Compar-
ing models with explanation alignment should use the same saliency method to
prevent confounding differences in alignment due to the saliency method with
differences in alignment due to the model’s behavior. Further, it is important to
select a saliency method relevant to the model and task. As we saw in the previ-
ous take-away, Vanilla Gradients produces patch-based explanations for Trans-
formers that skews the range of explanation alignment values. This signals the
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Fig. 4: We compare the explanation alignment of 195 models across saliency meth-
ods (Vanilla Gradients and Grad-CAM), explanation alignment metrics (EAIoU and
EAPG), and tasks (ImageNet classification and CIFAR-100 transfer learning). In each
plot, color indicates architecture type and size encodes number of model parameters.

importance of computing explanation alignment with a task-appropriate saliency
method, such as a method designed specifically for Transformers [10, 13, 15].

EAIoU and EAPG are interchangeable for relative model comparisons. Both ex-
planation alignment measures (EAIoU and EAPG) result in similar model rank-
ings (Spearman’s rank correlation coefficient ρ = 0.902, p < 0.001). Unlike
explanation alignment’s sensitivity to saliency method, the relative explanation
alignment between models does not change substantially based on the underly-
ing saliency-based alignment metric. While the absolute value EAIoU and EAPG
measure a specific aspect of the model’s alignment, they can be interchanged
when measuring the relative alignment difference between models.

Accurate models can have low explanation alignment and vice versa. Confirming
our prior experimental results, we find that highly accurate models can have low
explanation alignment, since learning misaligned correlations can still result in
correct decisions within a dataset. However, we also find that aligned models
can have low task accuracy. One hypothesis for this is that spurious correlations
can still occur within the object of interest. For instance, even a model that
relies on pixels of the apple to predict apple could do so in unaligned ways, such
as only looking at color due to a bias that all apples are red. This signals the
importance of measuring explanation alignment alongside accuracy to ensure
models are both correct and human-aligned.

Explanation alignment does not predict ImageNet to CIFAR-100 transferability.
We would expect that models with greater explanation alignment would be bet-
ter able to transfer to new domains because they have learned the same reasoning
processes humans use to generalize between tasks. However, we do not find a cor-
relation between the explanation alignment of an ImageNet model and its 1-shot
learning performance on CIFAR-100. On one hand, this could suggest that while
explanation alignment can reveal differences in model behavior (e.g., bias), it is
not predictive of model generalizability. On the other hand, it could also be the
case that explanation alignment on ImageNet is not necessary to generalize to
the simple and small CIFAR-100 images which typically only contain a single ob-
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ject. Future work may consider larger-scale analysis and benchmarks to measure
the relationship between different types of alignment and model generalization.

5 Conclusion and Discussion

We present explanation alignment, a method to quantify the agreement between
model explanations with human reasoning. Using saliency methods [59, 61],
we generate model explanations and human-defined ground truth from exist-
ing datasets [17, 34]. We aggregate the results of saliency-based alignment met-
rics [8, 71] over many data instances to quantify the model’s alignment over many
decisions. Through experiments on ImageNet [17], MNIST [18], and CelebA [37]
datasets, we demonstrate that explanation alignment can reveal biases and be-
havioral differences between models with similar performance metrics. Our find-
ings highlight the importance of aligning model explanations with human expec-
tations to improve transparency, trustworthiness, and performance.

To compute explanation alignment, we leverage saliency methods to gen-
erate model explanations. Saliency methods are valuable to our computation
because they quantify the importance of each image feature, making them di-
rectly comparable to human explanations that are also defined on the image
pixels. However, research has demonstrated that saliency methods can generate
inconsistent explanations, highlight irrelevant features, and produce misleading
explanations [1, 6]. While explanation alignment accounts for one-off saliency
mistakes by aggregating over many model decisions, future work could explore
more robust saliency methods or ways to compute explanation alignment without
saliency methods, such as through concept-based or counterfacutal explanations.

Relatedly, explanation alignment requires human explanations in the form
of annotations of important image regions. In our experiments, we found that
many research datasets have associated human explanations [17, 34] or that
explanations can be derived from existing metadata [18, 37]. However, in settings
where human explanations can not be derived, image segmentation [40] or object
localization [66] models could identify important image regions as human-like
explanations. Further, defining a human explanation is inherently subjective,
and, as we saw in Sec. 4.3, there may exist many possible human explanations for
a given decision. As a result, future work could explore alternate representations
for human explanations, such as human studies to understand how humans select
and combine features to make their decisions.

Successful use of explanation alignment metrics suggests incorporating them
into model training to enforce explanation alignment during development. While
traditional training procedures emphasize correctness, explanation alignment
provides an opportunity to update model parameters based on their reason-
ing processes and alignment with human reasoning. Incorporating these metrics
could enable developers to enhance models beyond accuracy benchmarks, em-
phasizing the importance of how the model made its decision. Such models would
be not only trustworthy and reliable but could improve robustness to new and
unseen data.



Bibliography

[1] Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I.J., Hardt, M., Kim, B.:
Sanity checks for saliency maps. In: Bengio, S., Wallach, H.M., Larochelle,
H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural
Information Processing Systems 31: Annual Conference on Neural Informa-
tion Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada, pp. 9525–9536 (2018), URL https://proceedings.neurips.cc/
paper/2018/hash/294a8ed24b1ad22ec2e7efea049b8737-Abstract.html
14

[2] Adebayo, J., Muelly, M., Abelson, H., Kim, B.: Post hoc explanations
may be ineffective for detecting unknown spurious correlation. In: The
Tenth International Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022, OpenReview.net (2022), URL https:
//openreview.net/forum?id=xNOVfCCvDpM 3

[3] Aggarwal, M., Arun, N.T., Gupta, S., Vaswani, A., Chen, B., Li, M.D.,
Chang, K., Patel, J.B., Höbel, K., Gidwani, M., Kalpathy-Cramer, J.,
Singh, P.: Towards trainable saliency maps in medical imaging. CoRR
abs/2011.07482 (2020), URL https://arxiv.org/abs/2011.07482 1, 3

[4] Amodei, D., Olah, C., Steinhardt, J., Christiano, P.F., Schulman, J., Mané,
D.: Concrete problems in AI safety. CoRR abs/1606.06565 (2016), URL
http://arxiv.org/abs/1606.06565 3

[5] Angwin, J., Larson, J., Mattu, S., Kirchner, L.: Machine bias: There’s soft-
ware used across the country to predict future criminals. and it’s biased
against blacks. (2016), URL https://www.propublica.org/article/
machine-bias-risk-assessments-in-criminal-sentencing, accessed:
2024-08-20 8

[6] Arun, N.T., Gaw, N., Singh, P., Chang, K., Aggarwal, M., Chen, B., Hoebel,
K., Gupta, S., Patel, J.B., Gidwani, M., Adebayo, J., Li, M.D., Kalpathy-
Cramer, J.: Assessing the (un)trustworthiness of saliency maps for localizing
abnormalities in medical imaging. CoRR abs/2008.02766 (2020), URL
https://arxiv.org/abs/2008.02766 14

[7] Bellamy, R.K.E., Dey, K., Hind, M., Hoffman, S.C., Houde, S., Kannan,
K., Lohia, P., Martino, J., Mehta, S., Mojsilovic, A., Nagar, S., Rama-
murthy, K.N., Richards, J.T., Saha, D., Sattigeri, P., Singh, M., Varsh-
ney, K.R., Zhang, Y.: AI fairness 360: An extensible toolkit for detect-
ing and mitigating algorithmic bias. IBM J. Res. Dev. 63(4/5), 4:1–4:15
(2019), https://doi.org/10.1147/JRD.2019.2942287, URL https:
//doi.org/10.1147/JRD.2019.2942287 6

[8] Boggust, A., Hoover, B., Satyanarayan, A., Strobelt, H.: Shared interest:
Measuring human-ai alignment to identify recurring patterns in model be-
havior. In: Barbosa, S.D.J., Lampe, C., Appert, C., Shamma, D.A., Drucker,
S.M., Williamson, J.R., Yatani, K. (eds.) CHI ’22: CHI Conference on Hu-
man Factors in Computing Systems, New Orleans, LA, USA, 29 April 2022

https://proceedings.neurips.cc/paper/2018/hash/294a8ed24b1ad22ec2e7efea049b8737-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/294a8ed24b1ad22ec2e7efea049b8737-Abstract.html
https://openreview.net/forum?id=xNOVfCCvDpM
https://openreview.net/forum?id=xNOVfCCvDpM
https://arxiv.org/abs/2011.07482
http://arxiv.org/abs/1606.06565
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://arxiv.org/abs/2008.02766
https://doi.org/10.1147/JRD.2019.2942287
https://doi.org/10.1147/JRD.2019.2942287
https://doi.org/10.1147/JRD.2019.2942287
https://doi.org/10.1147/JRD.2019.2942287


16 H. Bang et al.

- 5 May 2022, pp. 10:1–10:17, ACM (2022), https://doi.org/10.1145/
3491102.3501965, URL https://doi.org/10.1145/3491102.3501965 1,
2, 3, 5, 14, 26

[9] Boggust, A.W., Suresh, H., Strobelt, H., Guttag, J.V., Satyanarayan, A.:
Saliency cards: A framework to characterize and compare saliency meth-
ods. In: Proceedings of the 2023 ACM Conference on Fairness, Accountabil-
ity, and Transparency, FAccT 2023, Chicago, IL, USA, June 12-15, 2023,
pp. 285–296, ACM (2023), https://doi.org/10.1145/3593013.3593997,
URL https://doi.org/10.1145/3593013.3593997 3

[10] Bousselham, W., Boggust, A.W., Chaybouti, S., Strobelt, H., Kuehne, H.:
Legrad: An explainability method for vision transformers via feature for-
mation sensitivity. CoRR abs/2404.03214 (2024), https://doi.org/
10.48550/ARXIV.2404.03214, URL https://doi.org/10.48550/arXiv.
2404.03214 1, 3, 13

[11] Carter, B., Jain, S., Mueller, J., Gifford, D.: Overinterpretation reveals im-
age classification model pathologies. In: Advances in Neural Information
Processing Systems (NeurIPS), pp. 15395–15407 (2021) 1, 2, 3, 6

[12] Carter, B., Mueller, J., Jain, S., Gifford, D.K.: What made you do this? un-
derstanding black-box decisions with sufficient input subsets. In: Chaudhuri,
K., Sugiyama, M. (eds.) The 22nd International Conference on Artificial In-
telligence and Statistics, AISTATS 2019, 16-18 April 2019, Naha, Okinawa,
Japan, Proceedings of Machine Learning Research, vol. 89, pp. 567–576,
PMLR (2019), URL http://proceedings.mlr.press/v89/carter19a.
html 3

[13] Chang, C., Creager, E., Goldenberg, A., Duvenaud, D.: Explaining image
classifiers by counterfactual generation. In: 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019, OpenReview.net (2019), URL https://openreview.net/forum?id=
B1MXz20cYQ 13

[14] Chefer, H., Gur, S., Wolf, L.: Generic attention-model explainability for in-
terpreting bi-modal and encoder-decoder transformers. In: 2021 IEEE/CVF
International Conference on Computer Vision, ICCV 2021, Montreal, QC,
Canada, October 10-17, 2021, pp. 387–396, IEEE (2021), https://doi.
org/10.1109/ICCV48922.2021.00045, URL https://doi.org/10.1109/
ICCV48922.2021.00045 3

[15] Chefer, H., Gur, S., Wolf, L.: Transformer interpretability beyond at-
tention visualization. In: IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2021, virtual, June 19-25, 2021, pp. 782–
791, Computer Vision Foundation / IEEE (2021), https://doi.org/
10.1109/CVPR46437.2021.00084, URL https://openaccess.thecvf.
com/content/CVPR2021/html/Chefer_Transformer_Interpretability_
Beyond_Attention_Visualization_CVPR_2021_paper.html 2, 3, 13

[16] Dastin, J.: Amazon scraps secret ai recruiting tool that showed bias
against women (2018), URL https://www.reuters.com/article/world/
insight-amazon-scraps-secret-ai-recruiting-tool-that-showed-
bias-against-women-idUSKCN1MK0AG/, accessed: 2024-08-20 8

https://doi.org/10.1145/3491102.3501965
https://doi.org/10.1145/3491102.3501965
https://doi.org/10.1145/3491102.3501965
https://doi.org/10.1145/3491102.3501965
https://doi.org/10.1145/3491102.3501965
https://doi.org/10.1145/3593013.3593997
https://doi.org/10.1145/3593013.3593997
https://doi.org/10.1145/3593013.3593997
https://doi.org/10.48550/ARXIV.2404.03214
https://doi.org/10.48550/ARXIV.2404.03214
https://doi.org/10.48550/ARXIV.2404.03214
https://doi.org/10.48550/ARXIV.2404.03214
https://doi.org/10.48550/arXiv.2404.03214
https://doi.org/10.48550/arXiv.2404.03214
http://proceedings.mlr.press/v89/carter19a.html
http://proceedings.mlr.press/v89/carter19a.html
https://openreview.net/forum?id=B1MXz20cYQ
https://openreview.net/forum?id=B1MXz20cYQ
https://doi.org/10.1109/ICCV48922.2021.00045
https://doi.org/10.1109/ICCV48922.2021.00045
https://doi.org/10.1109/ICCV48922.2021.00045
https://doi.org/10.1109/ICCV48922.2021.00045
https://doi.org/10.1109/ICCV48922.2021.00045
https://doi.org/10.1109/ICCV48922.2021.00045
https://doi.org/10.1109/CVPR46437.2021.00084
https://doi.org/10.1109/CVPR46437.2021.00084
https://doi.org/10.1109/CVPR46437.2021.00084
https://doi.org/10.1109/CVPR46437.2021.00084
https://openaccess.thecvf.com/content/CVPR2021/html/Chefer_Transformer_Interpretability_Beyond_Attention_Visualization_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Chefer_Transformer_Interpretability_Beyond_Attention_Visualization_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Chefer_Transformer_Interpretability_Beyond_Attention_Visualization_CVPR_2021_paper.html
https://www.reuters.com/article/world/insight-amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK0AG/
https://www.reuters.com/article/world/insight-amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK0AG/
https://www.reuters.com/article/world/insight-amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK0AG/


Explanation Alignment 17

[17] Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L.: Imagenet: A
large-scale hierarchical image database. In: 2009 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR 2009), 20-
25 June 2009, Miami, Florida, USA, pp. 248–255, IEEE Computer Society
(2009), https://doi.org/10.1109/CVPR.2009.5206848, URL https://
doi.org/10.1109/CVPR.2009.5206848 2, 4, 9, 11, 14, 25, 26

[18] Deng, L.: The MNIST database of handwritten digit images for machine
learning research [best of the web]. IEEE Signal Process. Mag. 29(6), 141–
142 (2012), https://doi.org/10.1109/MSP.2012.2211477, URL https:
//doi.org/10.1109/MSP.2012.2211477 2, 4, 6, 14, 25

[19] Dooley, S., Downing, R., Wei, G.Z., Shankar, N., Thymes, B., Thorkels-
dottir, G., Kurtz-Miott, T., Mattson, R., Obiwumi, O., Cherepanova, V.,
Goldblum, M., Dickerson, J.P., Goldstein, T.: Comparing human and ma-
chine bias in face recognition. CoRR abs/2110.08396 (2021), URL https:
//arxiv.org/abs/2110.08396 8

[20] Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by mean-
ingful perturbation. In: IEEE International Conference on Computer Vision,
ICCV 2017, Venice, Italy, October 22-29, 2017, pp. 3449–3457, IEEE Com-
puter Society (2017), https://doi.org/10.1109/ICCV.2017.371, URL
https://doi.org/10.1109/ICCV.2017.371 3

[21] Fukushima, K.: Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position. Biological
cybernetics 36(4), 193–202 (1980) 12

[22] Gabriel, I.: Artificial intelligence, values, and alignment. Minds Mach. 30(3),
411–437 (2020), https://doi.org/10.1007/S11023-020-09539-2, URL
https://doi.org/10.1007/s11023-020-09539-2 3

[23] Gao, Y., Sun, T.S., Bai, G., Gu, S., Hong, S.R., Zhao, L.: RES: A robust
framework for guiding visual explanation. In: Zhang, A., Rangwala, H. (eds.)
KDD ’22: The 28th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, Washington, DC, USA, August 14 - 18, 2022, pp. 432–
442, ACM (2022), https://doi.org/10.1145/3534678.3539419, URL
https://doi.org/10.1145/3534678.3539419 3

[24] Gao, Y., Sun, T.S., Zhao, L., Hong, S.R.: Aligning eyes between humans and
deep neural network through interactive attention alignment. Proc. ACM
Hum. Comput. Interact. 6(CSCW2), 1–28 (2022), https://doi.org/10.
1145/3555590, URL https://doi.org/10.1145/3555590 3

[25] Geirhos, R., Meding, K., Wichmann, F.A.: Beyond accuracy: quantifying
trial-by-trial behaviour of cnns and humans by measuring error consistency.
In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Ad-
vances in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS 2020, December 6-
12, 2020, virtual (2020), URL https://proceedings.neurips.cc/paper/
2020/hash/9f6992966d4c363ea0162a056cb45fe5-Abstract.html 3

[26] Geirhos, R., Temme, C.R.M., Rauber, J., Schütt, H.H., Bethge, M., Wich-
mann, F.A.: Generalisation in humans and deep neural networks. In:
Bengio, S., Wallach, H.M., Larochelle, H., Grauman, K., Cesa-Bianchi,

https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/MSP.2012.2211477
https://doi.org/10.1109/MSP.2012.2211477
https://doi.org/10.1109/MSP.2012.2211477
https://doi.org/10.1109/MSP.2012.2211477
https://arxiv.org/abs/2110.08396
https://arxiv.org/abs/2110.08396
https://doi.org/10.1109/ICCV.2017.371
https://doi.org/10.1109/ICCV.2017.371
https://doi.org/10.1109/ICCV.2017.371
https://doi.org/10.1007/S11023-020-09539-2
https://doi.org/10.1007/S11023-020-09539-2
https://doi.org/10.1007/s11023-020-09539-2
https://doi.org/10.1145/3534678.3539419
https://doi.org/10.1145/3534678.3539419
https://doi.org/10.1145/3534678.3539419
https://doi.org/10.1145/3555590
https://doi.org/10.1145/3555590
https://doi.org/10.1145/3555590
https://doi.org/10.1145/3555590
https://doi.org/10.1145/3555590
https://proceedings.neurips.cc/paper/2020/hash/9f6992966d4c363ea0162a056cb45fe5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/9f6992966d4c363ea0162a056cb45fe5-Abstract.html


18 H. Bang et al.

N., Garnett, R. (eds.) Advances in Neural Information Processing Sys-
tems 31: Annual Conference on Neural Information Processing Systems
2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp. 7549–
7561 (2018), URL https://proceedings.neurips.cc/paper/2018/hash/
0937fb5864ed06ffb59ae5f9b5ed67a9-Abstract.html 3

[27] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recog-
nition. In: 2016 IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pp. 770–778,
IEEE Computer Society (2016), https://doi.org/10.1109/CVPR.2016.
90, URL https://doi.org/10.1109/CVPR.2016.90 9, 26

[28] Ji, J., Qiu, T., Chen, B., Zhang, B., Lou, H., Wang, K., Duan, Y., He, Z.,
Zhou, J., Zhang, Z., Zeng, F., Ng, K.Y., Dai, J., Pan, X., O’Gara, A., Lei, Y.,
Xu, H., Tse, B., Fu, J., McAleer, S., Yang, Y., Wang, Y., Zhu, S., Guo, Y.,
Gao, W.: AI alignment: A comprehensive survey. CoRR abs/2310.19852
(2023), https://doi.org/10.48550/ARXIV.2310.19852, URL https://
doi.org/10.48550/arXiv.2310.19852 2

[29] Kapishnikov, A., Bolukbasi, T., Viégas, F.B., Terry, M.: XRAI: better attri-
butions through regions. In: 2019 IEEE/CVF International Conference on
Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 - November
2, 2019, pp. 4947–4956, IEEE (2019), https://doi.org/10.1109/ICCV.
2019.00505, URL https://doi.org/10.1109/ICCV.2019.00505 3

[30] Kim, S.S.Y., Meister, N., Ramaswamy, V.V., Fong, R., Russakovsky, O.:
HIVE: evaluating the human interpretability of visual explanations. In: Avi-
dan, S., Brostow, G.J., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Com-
puter Vision - ECCV 2022 - 17th European Conference, Tel Aviv, Israel,
October 23-27, 2022, Proceedings, Part XII, Lecture Notes in Computer
Science, vol. 13672, pp. 280–298, Springer (2022), https://doi.org/10.
1007/978-3-031-19775-8_17, URL https://doi.org/10.1007/978-3-
031-19775-8_17 3

[31] Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural net-
work representations revisited. In: Chaudhuri, K., Salakhutdinov, R. (eds.)
Proceedings of the 36th International Conference on Machine Learning,
ICML 2019, 9-15 June 2019, Long Beach, California, USA, Proceedings of
Machine Learning Research, vol. 97, pp. 3519–3529, PMLR (2019), URL
http://proceedings.mlr.press/v97/kornblith19a.html 3

[32] Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from
tiny images (2009) 12

[33] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning
applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998),
https://doi.org/10.1109/5.726791, URL https://doi.org/10.1109/
5.726791 6

[34] Lee, C.H., Liu, Z., Wu, L., Luo, P.: Maskgan: Towards diverse and interac-
tive facial image manipulation. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (2020) 10, 11, 12, 14

[35] Li, K., Wu, Z., Peng, K., Ernst, J., Fu, Y.: Tell me where to look: Guided
attention inference network. In: 2018 IEEE Conference on Computer Vi-

https://proceedings.neurips.cc/paper/2018/hash/0937fb5864ed06ffb59ae5f9b5ed67a9-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/0937fb5864ed06ffb59ae5f9b5ed67a9-Abstract.html
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.48550/ARXIV.2310.19852
https://doi.org/10.48550/ARXIV.2310.19852
https://doi.org/10.48550/arXiv.2310.19852
https://doi.org/10.48550/arXiv.2310.19852
https://doi.org/10.1109/ICCV.2019.00505
https://doi.org/10.1109/ICCV.2019.00505
https://doi.org/10.1109/ICCV.2019.00505
https://doi.org/10.1109/ICCV.2019.00505
https://doi.org/10.1109/ICCV.2019.00505
https://doi.org/10.1007/978-3-031-19775-8\_17
https://doi.org/10.1007/978-3-031-19775-8_17
https://doi.org/10.1007/978-3-031-19775-8\_17
https://doi.org/10.1007/978-3-031-19775-8_17
https://doi.org/10.1007/978-3-031-19775-8_17
https://doi.org/10.1007/978-3-031-19775-8_17
http://proceedings.mlr.press/v97/kornblith19a.html
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791


Explanation Alignment 19

sion and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June
18-22, 2018, pp. 9215–9223, Computer Vision Foundation / IEEE Com-
puter Society (2018), https://doi.org/10.1109/CVPR.2018.00960, URL
http://openaccess.thecvf.com/content_cvpr_2018/html/Li_Tell_
Me_Where_CVPR_2018_paper.html 3

[36] Linardatos, P., Papastefanopoulos, V., Kotsiantis, S.: Explainable AI: A
review of machine learning interpretability methods. Entropy 23(1), 18
(2021), https://doi.org/10.3390/E23010018, URL https://doi.org/
10.3390/e23010018 3

[37] Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the
wild. In: 2015 IEEE International Conference on Computer Vision, ICCV
2015, Santiago, Chile, December 7-13, 2015, pp. 3730–3738, IEEE Computer
Society (2015), https://doi.org/10.1109/ICCV.2015.425, URL https:
//doi.org/10.1109/ICCV.2015.425 2, 4, 6, 8, 9, 10, 14, 25

[38] Liu, Z., Mao, H., Wu, C., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet
for the 2020s. In: IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp.
11966–11976, IEEE (2022), https://doi.org/10.1109/CVPR52688.2022.
01167, URL https://doi.org/10.1109/CVPR52688.2022.01167 26

[39] Lundberg, S.M., Lee, S.: A unified approach to interpreting model predic-
tions. In: Guyon, I., von Luxburg, U., Bengio, S., Wallach, H.M., Fergus,
R., Vishwanathan, S.V.N., Garnett, R. (eds.) Advances in Neural Infor-
mation Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
4765–4774 (2017), URL https://proceedings.neurips.cc/paper/2017/
hash/8a20a8621978632d76c43dfd28b67767-Abstract.html 3

[40] Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N., Ter-
zopoulos, D.: Image segmentation using deep learning: A survey. CoRR
abs/2001.05566 (2020), URL https://arxiv.org/abs/2001.05566 14

[41] Molnar, C.: Interpretable Machine Learning. 2 edn. (2022), URL https:
//christophm.github.io/interpretable-ml-book 1, 3

[42] Morrison, K., Mehra, A., Perer, A.: Shared interest...sometimes: Under-
standing the alignment between human perception, vision architectures,
and saliency map techniques. In: IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, CVPR 2023 - Workshops, Vancouver, BC,
Canada, June 17-24, 2023, pp. 3776–3781, IEEE (2023), https://doi.org/
10.1109/CVPRW59228.2023.00391, URL https://doi.org/10.1109/
CVPRW59228.2023.00391 2, 3

[43] Muttenthaler, L., Dippel, J., Linhardt, L., Vandermeulen, R.A., Kornblith,
S.: Human alignment of neural network representations. In: The Eleventh
International Conference on Learning Representations, ICLR 2023, Ki-
gali, Rwanda, May 1-5, 2023, OpenReview.net (2023), URL https://
openreview.net/forum?id=ReDQ1OUQR0X 3

[44] Narla, A., Kuprel, B., Sarin, K., Novoa, R., Ko, J.: Automated classification
of skin lesions: from pixels to practice. Journal of Investigative Dermatology
138(10), 2108–2110 (2018) 2

https://doi.org/10.1109/CVPR.2018.00960
https://doi.org/10.1109/CVPR.2018.00960
http://openaccess.thecvf.com/content_cvpr_2018/html/Li_Tell_Me_Where_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Li_Tell_Me_Where_CVPR_2018_paper.html
https://doi.org/10.3390/E23010018
https://doi.org/10.3390/E23010018
https://doi.org/10.3390/e23010018
https://doi.org/10.3390/e23010018
https://doi.org/10.1109/ICCV.2015.425
https://doi.org/10.1109/ICCV.2015.425
https://doi.org/10.1109/ICCV.2015.425
https://doi.org/10.1109/ICCV.2015.425
https://doi.org/10.1109/CVPR52688.2022.01167
https://doi.org/10.1109/CVPR52688.2022.01167
https://doi.org/10.1109/CVPR52688.2022.01167
https://doi.org/10.1109/CVPR52688.2022.01167
https://doi.org/10.1109/CVPR52688.2022.01167
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://arxiv.org/abs/2001.05566
https://christophm.github.io/interpretable-ml-book
https://christophm.github.io/interpretable-ml-book
https://doi.org/10.1109/CVPRW59228.2023.00391
https://doi.org/10.1109/CVPRW59228.2023.00391
https://doi.org/10.1109/CVPRW59228.2023.00391
https://doi.org/10.1109/CVPRW59228.2023.00391
https://doi.org/10.1109/CVPRW59228.2023.00391
https://doi.org/10.1109/CVPRW59228.2023.00391
https://openreview.net/forum?id=ReDQ1OUQR0X
https://openreview.net/forum?id=ReDQ1OUQR0X


20 H. Bang et al.

[45] Nguyen, G., Kim, D., Nguyen, A.: The effectiveness of feature attribution
methods and its correlation with automatic evaluation scores. In: Ranzato,
M., Beygelzimer, A., Dauphin, Y.N., Liang, P., Vaughan, J.W. (eds.) Ad-
vances in Neural Information Processing Systems 34: Annual Conference on
Neural Information Processing Systems 2021, NeurIPS 2021, December 6-
14, 2021, virtual, pp. 26422–26436 (2021), URL https://proceedings.
neurips.cc/paper/2021/hash/de043a5e421240eb846da8effe472ff1-
Abstract.html 3

[46] Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn
the same things? uncovering how neural network representations vary with
width and depth. In: 9th International Conference on Learning Representa-
tions, ICLR 2021, Virtual Event, Austria, May 3-7, 2021, OpenReview.net
(2021), URL https://openreview.net/forum?id=KJNcAkY8tY4 3

[47] Parmar, N., Vaswani, A., Uszkoreit, J., Kaiser, L., Shazeer, N., Ku, A.,
Tran, D.: Image transformer. In: Dy, J.G., Krause, A. (eds.) Proceedings
of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, Proceedings of
Machine Learning Research, vol. 80, pp. 4052–4061, PMLR (2018), URL
http://proceedings.mlr.press/v80/parmar18a.html 12

[48] Pasa, F., Golkov, V., Pfeiffer, F., Cremers, D., Pfeiffer, D.: Efficient deep
network architectures for fast chest x-ray tuberculosis screening and visu-
alization. Scientific reports 9(1), 6268 (2019) 1, 3

[49] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan,
G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A.,
Köpf, A., Yang, E.Z., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy,
S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An impera-
tive style, high-performance deep learning library. In: Wallach, H.M.,
Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett,
R. (eds.) Advances in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada, pp. 8024–8035
(2019), URL https://proceedings.neurips.cc/paper/2019/hash/
bdbca288fee7f92f2bfa9f7012727740-Abstract.html 26

[50] Petsiuk, V., Das, A., Saenko, K.: RISE: randomized input sampling for
explanation of black-box models. In: British Machine Vision Conference
2018, BMVC 2018, Newcastle, UK, September 3-6, 2018, p. 151, BMVA
Press (2018), URL http://bmvc2018.org/contents/papers/1064.pdf 1,
2, 3

[51] Radosavovic, I., Kosaraju, R.P., Girshick, R.B., He, K., Dollár, P.: De-
signing network design spaces. In: 2020 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA,
June 13-19, 2020, pp. 10425–10433, Computer Vision Foundation / IEEE
(2020), https://doi.org/10.1109/CVPR42600.2020.01044, URL https:
//openaccess.thecvf.com/content_CVPR_2020/html/Radosavovic_
Designing_Network_Design_Spaces_CVPR_2020_paper.html 26

https://proceedings.neurips.cc/paper/2021/hash/de043a5e421240eb846da8effe472ff1-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/de043a5e421240eb846da8effe472ff1-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/de043a5e421240eb846da8effe472ff1-Abstract.html
https://openreview.net/forum?id=KJNcAkY8tY4
http://proceedings.mlr.press/v80/parmar18a.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
http://bmvc2018.org/contents/papers/1064.pdf
https://doi.org/10.1109/CVPR42600.2020.01044
https://doi.org/10.1109/CVPR42600.2020.01044
https://openaccess.thecvf.com/content_CVPR_2020/html/Radosavovic_Designing_Network_Design_Spaces_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Radosavovic_Designing_Network_Design_Spaces_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Radosavovic_Designing_Network_Design_Spaces_CVPR_2020_paper.html


Explanation Alignment 21

[52] Raghu, M., Unterthiner, T., Kornblith, S., Zhang, C., Dosovitskiy, A.: Do
vision transformers see like convolutional neural networks? In: Ranzato, M.,
Beygelzimer, A., Dauphin, Y.N., Liang, P., Vaughan, J.W. (eds.) Advances
in Neural Information Processing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021,
virtual, pp. 12116–12128 (2021), URL https://proceedings.neurips.cc/
paper/2021/hash/652cf38361a209088302ba2b8b7f51e0-Abstract.html
3

[53] Rao, S., Böhle, M., Parchami-Araghi, A., Schiele, B.: Studying how to effi-
ciently and effectively guide models with explanations. In: IEEE/CVF In-
ternational Conference on Computer Vision, ICCV 2023, Paris, France, Oc-
tober 1-6, 2023, pp. 1922–1933, IEEE (2023), https://doi.org/10.1109/
ICCV51070.2023.00184, URL https://doi.org/10.1109/ICCV51070.
2023.00184 3

[54] Ribeiro, M.T., Singh, S., Guestrin, C.: "why should I trust you?": Ex-
plaining the predictions of any classifier. In: Krishnapuram, B., Shah, M.,
Smola, A.J., Aggarwal, C.C., Shen, D., Rastogi, R. (eds.) Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, San Francisco, CA, USA, August 13-17, 2016, pp. 1135–
1144, ACM (2016), https://doi.org/10.1145/2939672.2939778, URL
https://doi.org/10.1145/2939672.2939778 3

[55] Rieger, L., Singh, C., Murdoch, W.J., Yu, B.: Interpretations are use-
ful: Penalizing explanations to align neural networks with prior knowl-
edge. In: Proceedings of the 37th International Conference on Machine
Learning, ICML 2020, 13-18 July 2020, Virtual Event, Proceedings of Ma-
chine Learning Research, vol. 119, pp. 8116–8126, PMLR (2020), URL
http://proceedings.mlr.press/v119/rieger20a.html 3

[56] Ross, A.S., Hughes, M.C., Doshi-Velez, F.: Right for the right reasons:
Training differentiable models by constraining their explanations. In: Sierra,
C. (ed.) Proceedings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25,
2017, pp. 2662–2670, ijcai.org (2017), https://doi.org/10.24963/IJCAI.
2017/371, URL https://doi.org/10.24963/ijcai.2017/371 3, 6

[57] Saporta, A., Gui, X., Agrawal, A., Pareek, A., Truong, S.Q.H., Nguyen,
C.D.T., Ngo, V.D., Seekins, J., Blankenberg, F.G., Ng, A.Y., Lungren,
M.P., Rajpurkar, P.: Benchmarking saliency methods for chest x-ray inter-
pretation. Nat. Mac. Intell. 4(10), 867–878 (2022), https://doi.org/10.
1038/S42256-022-00536-X, URL https://doi.org/10.1038/s42256-
022-00536-x 1, 3

[58] Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.:
Grad-cam: Visual explanations from deep networks via gradient-based local-
ization. vol. 128, pp. 336–359 (2020), https://doi.org/10.1007/S11263-
019-01228-7, URL https://doi.org/10.1007/s11263-019-01228-7 1,
3

[59] Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra,
D.: Grad-cam: Visual explanations from deep networks via gradient-based

https://proceedings.neurips.cc/paper/2021/hash/652cf38361a209088302ba2b8b7f51e0-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/652cf38361a209088302ba2b8b7f51e0-Abstract.html
https://doi.org/10.1109/ICCV51070.2023.00184
https://doi.org/10.1109/ICCV51070.2023.00184
https://doi.org/10.1109/ICCV51070.2023.00184
https://doi.org/10.1109/ICCV51070.2023.00184
https://doi.org/10.1109/ICCV51070.2023.00184
https://doi.org/10.1109/ICCV51070.2023.00184
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778
http://proceedings.mlr.press/v119/rieger20a.html
https://doi.org/10.24963/IJCAI.2017/371
https://doi.org/10.24963/IJCAI.2017/371
https://doi.org/10.24963/IJCAI.2017/371
https://doi.org/10.24963/IJCAI.2017/371
https://doi.org/10.24963/ijcai.2017/371
https://doi.org/10.1038/S42256-022-00536-X
https://doi.org/10.1038/S42256-022-00536-X
https://doi.org/10.1038/S42256-022-00536-X
https://doi.org/10.1038/S42256-022-00536-X
https://doi.org/10.1038/s42256-022-00536-x
https://doi.org/10.1038/s42256-022-00536-x
https://doi.org/10.1007/S11263-019-01228-7
https://doi.org/10.1007/S11263-019-01228-7
https://doi.org/10.1007/S11263-019-01228-7
https://doi.org/10.1007/S11263-019-01228-7
https://doi.org/10.1007/s11263-019-01228-7


22 H. Bang et al.

localization. Int. J. Comput. Vis. 128(2), 336–359 (2020), https://doi.
org/10.1007/S11263-019-01228-7, URL https://doi.org/10.1007/
s11263-019-01228-7 3, 4, 9, 10, 11, 12, 14, 26

[60] Shahriari, K., Shahriari, M.: IEEE standard review - ethically aligned de-
sign: A vision for prioritizing human wellbeing with artificial intelligence and
autonomous systems. In: IEEE Canada International Humanitarian Tech-
nology Conference, IHTC 2017, Toronto, ON, Canada, July 21-22, 2017, pp.
197–201, IEEE (2017), https://doi.org/10.1109/IHTC.2017.8058187,
URL https://doi.org/10.1109/IHTC.2017.8058187 3

[61] Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional net-
works: Visualising image classification models and saliency maps. In: Ben-
gio, Y., LeCun, Y. (eds.) 2nd International Conference on Learning Rep-
resentations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Workshop
Track Proceedings (2014), URL http://arxiv.org/abs/1312.6034 1, 4,
7, 8, 11, 14, 26

[62] Smilkov, D., Thorat, N., Kim, B., Viégas, F.B., Wattenberg, M.: Smooth-
grad: removing noise by adding noise. CoRR abs/1706.03825 (2017), URL
http://arxiv.org/abs/1706.03825 3

[63] Sucholutsky, I., Muttenthaler, L., Weller, A., Peng, A., Bobu, A., Kim,
B., Love, B.C., Grant, E., Achterberg, J., Tenenbaum, J.B., Collins, K.M.,
Hermann, K.L., Oktar, K., Greff, K., Hebart, M.N., Jacoby, N., Zhang,
Q., Marjieh, R., Geirhos, R., Chen, S., Kornblith, S., Rane, S., Kon-
kle, T., O’Connell, T.P., Unterthiner, T., Lampinen, A.K., Müller, K.,
Toneva, M., Griffiths, T.L.: Getting aligned on representational alignment.
CoRR abs/2310.13018 (2023), https://doi.org/10.48550/ARXIV.
2310.13018, URL https://doi.org/10.48550/arXiv.2310.13018 2

[64] Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep net-
works. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th Interna-
tional Conference on Machine Learning, ICML 2017, Sydney, NSW, Aus-
tralia, 6-11 August 2017, Proceedings of Machine Learning Research, vol. 70,
pp. 3319–3328, PMLR (2017), URL http://proceedings.mlr.press/
v70/sundararajan17a.html 3

[65] Terry, M., Kulkarni, C., Wattenberg, M., Dixon, L., Morris, M.R.: AI
alignment in the design of interactive AI: specification alignment, pro-
cess alignment, and evaluation support. CoRR abs/2311.00710 (2023),
https://doi.org/10.48550/ARXIV.2311.00710, URL https://doi.
org/10.48550/arXiv.2311.00710 2

[66] Tompson, J., Goroshin, R., Jain, A., LeCun, Y., Bregler, C.: Efficient object
localization using convolutional networks. In: IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA,
June 7-12, 2015, pp. 648–656, IEEE Computer Society (2015), https:
//doi.org/10.1109/CVPR.2015.7298664, URL https://doi.org/10.
1109/CVPR.2015.7298664 14

[67] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Guyon, I.,
von Luxburg, U., Bengio, S., Wallach, H.M., Fergus, R., Vishwanathan,

https://doi.org/10.1007/S11263-019-01228-7
https://doi.org/10.1007/S11263-019-01228-7
https://doi.org/10.1007/S11263-019-01228-7
https://doi.org/10.1007/S11263-019-01228-7
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1109/IHTC.2017.8058187
https://doi.org/10.1109/IHTC.2017.8058187
https://doi.org/10.1109/IHTC.2017.8058187
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1706.03825
https://doi.org/10.48550/ARXIV.2310.13018
https://doi.org/10.48550/ARXIV.2310.13018
https://doi.org/10.48550/ARXIV.2310.13018
https://doi.org/10.48550/ARXIV.2310.13018
https://doi.org/10.48550/arXiv.2310.13018
http://proceedings.mlr.press/v70/sundararajan17a.html
http://proceedings.mlr.press/v70/sundararajan17a.html
https://doi.org/10.48550/ARXIV.2311.00710
https://doi.org/10.48550/ARXIV.2311.00710
https://doi.org/10.48550/arXiv.2311.00710
https://doi.org/10.48550/arXiv.2311.00710
https://doi.org/10.1109/CVPR.2015.7298664
https://doi.org/10.1109/CVPR.2015.7298664
https://doi.org/10.1109/CVPR.2015.7298664
https://doi.org/10.1109/CVPR.2015.7298664
https://doi.org/10.1109/CVPR.2015.7298664
https://doi.org/10.1109/CVPR.2015.7298664


Explanation Alignment 23

S.V.N., Garnett, R. (eds.) Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Sys-
tems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008
(2017), URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html 12

[68] Vellido, A., Martín-Guerrero, J.D., Lisboa, P.J.G.: Making machine learning
models interpretable. In: 20th European Symposium on Artificial Neural
Networks, ESANN 2012, Bruges, Belgium, April 25-27, 2012 (2012), URL
https://www.esann.org/sites/default/files/proceedings/legacy/
es2012-7.pdf 3

[69] Wang, Z., Qinami, K., Karakozis, I.C., Genova, K., Nair, P., Hata, K., Rus-
sakovsky, O.: Towards fairness in visual recognition: Effective strategies for
bias mitigation. In: 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020,
pp. 8916–8925, Computer Vision Foundation / IEEE (2020), https://
doi.org/10.1109/CVPR42600.2020.00894, URL https://openaccess.
thecvf.com/content_CVPR_2020/html/Wang_Towards_Fairness_in_
Visual_Recognition_Effective_Strategies_for_Bias_Mitigation_
CVPR_2020_paper.html 6

[70] Wollek, A., Graf, R., Cecatka, S., Fink, N., Willem, T., Sabel, B.O., Lasser,
T.: Attention-based saliency maps improve interpretability of pneumoth-
orax classification. CoRR abs/2303.01871 (2023), https://doi.org/
10.48550/ARXIV.2303.01871, URL https://doi.org/10.48550/arXiv.
2303.01871 1, 3

[71] Zhang, J., Bargal, S.A., Lin, Z., Brandt, J., Shen, X., Sclaroff, S.: Top-
down neural attention by excitation backprop. Int. J. Comput. Vis. 126(10),
1084–1102 (2018), https://doi.org/10.1007/S11263-017-1059-X, URL
https://doi.org/10.1007/s11263-017-1059-x 1, 2, 3, 5, 14

[72] Zhou, C., Ma, X., Michel, P., Neubig, G.: Examining and combating spu-
rious features under distribution shift. In: Meila, M., Zhang, T. (eds.)
Proceedings of the 38th International Conference on Machine Learning,
ICML 2021, 18-24 July 2021, Virtual Event, Proceedings of Machine Learn-
ing Research, vol. 139, pp. 12857–12867, PMLR (2021), URL http://
proceedings.mlr.press/v139/zhou21g.html 6

https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://www.esann.org/sites/default/files/proceedings/legacy/es2012-7.pdf
https://www.esann.org/sites/default/files/proceedings/legacy/es2012-7.pdf
https://doi.org/10.1109/CVPR42600.2020.00894
https://doi.org/10.1109/CVPR42600.2020.00894
https://doi.org/10.1109/CVPR42600.2020.00894
https://doi.org/10.1109/CVPR42600.2020.00894
https://openaccess.thecvf.com/content_CVPR_2020/html/Wang_Towards_Fairness_in_Visual_Recognition_Effective_Strategies_for_Bias_Mitigation_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Wang_Towards_Fairness_in_Visual_Recognition_Effective_Strategies_for_Bias_Mitigation_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Wang_Towards_Fairness_in_Visual_Recognition_Effective_Strategies_for_Bias_Mitigation_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Wang_Towards_Fairness_in_Visual_Recognition_Effective_Strategies_for_Bias_Mitigation_CVPR_2020_paper.html
https://doi.org/10.48550/ARXIV.2303.01871
https://doi.org/10.48550/ARXIV.2303.01871
https://doi.org/10.48550/ARXIV.2303.01871
https://doi.org/10.48550/ARXIV.2303.01871
https://doi.org/10.48550/arXiv.2303.01871
https://doi.org/10.48550/arXiv.2303.01871
https://doi.org/10.1007/S11263-017-1059-X
https://doi.org/10.1007/S11263-017-1059-X
https://doi.org/10.1007/s11263-017-1059-x
http://proceedings.mlr.press/v139/zhou21g.html
http://proceedings.mlr.press/v139/zhou21g.html


24 H. Bang et al.

A Appendix

A.1 Additional Examples

Fig. A1 and Fig. A2 illustrate the experimental setup used to evaluate the ex-
planation alignment between model predictions and human expectations in Im-
ageNet image classification tasks, providing visual context for the comparison of
models with different model architectures and saliency methods.
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Fig.A1: Explanation alignment reveals that similarly accurate ImageNet models have
different model reasoning. Despite each model (convnext_tiny, regnet_x_3_2_gf, and
regnet_y_1_6_gf) achieving 81− 82% accuracy, their EAIoU and EAPG vary by 20%,
reflecting the differences in human alignment visible in their saliency maps.
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Fig.A2: The saliency maps of cait_s24_384 and resmlp_12_distilled_224
show more scattered and noisy patterns due to their transformer-based ar-
chitecture, whereas resnet269e and tf_mobilenetv3_small_minimal_100 exhibit
more continuous maps, due to their convolutional network designs. Interestingly,
tf_mobilenetv3_small_minimal_100 yields higher mean explanation alignment de-
spite less focused saliency maps, likely because the human explanation annotations
in ImageNet tend to cover larger regions. This highlights the impact of the choice of
saliency method, model architecture, and human explanations on measuring explana-
tion alignment.

A.2 Model Training Details

In this paper, we conduct experiments on three distinct datasets: ImageNet [17],
MNIST [18], and CelebA [37], using pretrained models and custom architectures
to evaluate their performance across different image classification tasks. These
experiments are executed on a GPU-enhanced, high-performance Power 9 sys-
tem, featuring 64 nodes with 1TB memory each, equipped with four NVIDIA



26 H. Bang et al.

V100 32GB GPUs per node, interconnected by NVLink2 for high-speed GPU
communication and a 100Gb/s Infiniband network for cluster connectivity.

ImageNet We evaluate pretrained ImageNet [17] models provided by Py-
Torch [49]. Among them, we use three CNN models: ConvNeXt Tiny, Reg-
NetX_3.2GF, and RegNetY_1.6GF. ConvNeXt, designed by updating a stan-
dard ResNet to mimic a Vision Transformer (ViT), results in similar accuracy to
ViT but maintains the simplicity of standard ConvNets [38]. RegNet, a network
design space rather than a single architecture, presents a variety of model archi-
tectures characterized by distinct parameters [51]. The key difference between
RegNetX and RegNetY models is the inclusion of the Squeeze and Excitation
layer in RegNetY.

MNIST To perform the experiment in Sec. 4.1, we design a neural network
architecture for image classification. This architecture processes 3-channel input
images through two convolutional layers with ReLU activations, incorporates
max pooling and dropout layers to reduce overfitting, and concludes with two
fully connected layers utilizing softmax activation for class probability output.
This custom model is trained on a modified version of the MNIST dataset,
described in Sec. 4.1, over four epochs with negative log likelihood loss. With
the batch size of 64, the training of each epoch took approximately one minute,
totaling four minutes per model.

CelebA We use the pretrained ImageNet [17] pretrained ResNet50 [27] model
for image recognition. ResNet50 model, a part of the Residual Network (ResNet)
series, is a deep convolutional neural network (CNN) architecture, with 50 layers
in the network. The dataset is divided into biased and unbiased sets based on
hair color and smiling attributes, further described in Sec. 4.2 for training and
testing. Models are trained over five epochs using cross-entropy loss, with a batch
size of 128. Each epoch took, in average, 16 minutes, totaling in 80 minutes per
model.

A.3 Metric Computation

Saliency Method and Implementation After comparing different existing
saliency methods, we use Grad-CAM [59] and Vanilla Gradients [61] for their
effectiveness in producing representative explanations of model reasoning. Grad-
Cam excels at localizing relevant areas in the image for the model’s decision,
whereas Vanilla Gradient demonstrate the sensitivity of each pixel on its decision.
We use the publicly available implementations of these saliency methods from
the Shared Interest paper [8].

Thresholding Technique For Grad-CAM, we select a threshold of 0.5, chosen
after observing a range in average saliency values across models, which varied
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from nearly zero to almost one. This decision is validated through analyses across
diverse settings, including differences in ground truth and saliency map sizes.
This thresholding technique produces a consistent and balanced representation
of the model’s explanation across these settings.

For Vanilla Gradients, we apply a threshold set at one standard deviation
above the mean, chosen through our analysis of saliency maps’ focus and speci-
ficity. Due to its tendency to be noisier, thresholding based on a single value
is insufficient. Also, thresholding at the mean results in broad, unfocused maps
lacking in detailed model explanation, whereas thresholding at two standard de-
viations above the mean produced overly narrow map that are sometimes too
limited for effective metric evaluation. The chosen threshold produces a balanced
representation, capturing the essence of model explanations in a way that is both
focused and sufficiently detailed.

List of 195 models used in experiments

1. adv_inception_v3
2. bat_resnext26ts
3. beit_base_patch16_224
4. beit_base_patch16_384
5. botnet26t_256
6. cait_s24_224
7. cait_s24_384
8. cait_s36_384
9. cait_xs24_384

10. cait_xxs24_224
11. cait_xxs24_384
12. cait_xxs36_224
13. cait_xxs36_384
14. coat_lite_mini
15. coat_lite_small
16. coat_lite_tiny
17. coat_mini
18. coat_tiny
19. convit_base
20. convit_small
21. convit_tiny
22. convmixer_1024_20_ks9_p14
23. convnext_base
24. cspdarknet53
25. cspresnet50
26. cspresnext50
27. deit_base_patch16_224
28. densenet121
29. dla60
30. dla60_res2net
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31. dla60_res2next
32. dla60x
33. dla60x_c
34. dm_nfnet_f2
35. dpn68
36. efficientnetv2_rw_t
37. ens_adv_inception_resnet_v2
38. ese_vovnet19b_dw
39. ese_vovnet39b
40. fbnetc_100
41. fbnetv3_d
42. fbnetv3_g
43. gc_efficientnetv2_rw_t
44. gcresnet33ts
45. gcresnet50t
46. gcresnext26ts
47. gcresnext50ts
48. gernet_l
49. gernet_m
50. gernet_s
51. ghostnet_100
52. gluon_inception_v3
53. gluon_resnet101_v1b
54. gluon_resnet152_v1b
55. gluon_resnet152_v1c
56. gluon_resnet152_v1d
57. gluon_resnet152_v1s
58. gluon_resnet18_v1b
59. gluon_resnet34_v1b
60. gluon_resnet50_v1b
61. gluon_resnet50_v1c
62. gluon_resnet50_v1d
63. gluon_resnet50_v1s
64. gluon_resnext101_32x4d
65. gluon_senet154
66. gluon_seresnext101_32x4d
67. gmixer_24_224
68. gmlp_s16_224
69. halo2botnet50ts_256
70. halonet26t
71. haloregnetz_b
72. hardcorenas_a
73. hrnet_w18
74. ig_resnext101_32x16d
75. inception_resnet_v2
76. inception_v3
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77. jx_nest_base
78. lambda_resnet26rpt_256
79. lamhalobotnet50ts_256
80. lcnet_050
81. legacy_senet154
82. legacy_seresnet101
83. legacy_seresnext101_32x4d
84. mixer_b16_224
85. mixnet_l
86. mnasnet_100
87. regnety_080
88. regnety_120
89. regnety_160
90. regnety_320
91. regnetz_b16
92. regnetz_c16
93. regnetz_d32
94. regnetz_d8
95. regnetz_e8
96. repvgg_a2
97. repvgg_b0
98. repvgg_b1
99. repvgg_b1g4

100. repvgg_b2
101. repvgg_b2g4
102. repvgg_b3
103. repvgg_b3g4
104. res2net101_26w_4s
105. res2net50_14w_8s
106. res2net50_26w_4s
107. res2net50_26w_6s
108. res2net50_26w_8s
109. res2net50_48w_2s
110. res2next50
111. resmlp_12_224
112. resmlp_12_distilled_224
113. resmlp_24_224
114. resmlp_24_distilled_224
115. resmlp_36_224
116. resmlp_36_distilled_224
117. resmlp_big_24_224
118. resmlp_big_24_224_in22ft1k
119. resmlp_big_24_distilled_224
120. resnest101e
121. resnest14d
122. resnest200e
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123. resnest269e
124. resnest26d
125. resnest50d
126. resnest50d_1s4x24d
127. resnest50d_4s2x40d
128. resnet101
129. resnet101d
130. resnet152
131. resnet152d
132. resnet18
133. resnet18d
134. resnet200d
135. resnet26
136. resnet26d
137. resnet26t
138. resnet32ts
139. resnet33ts
140. resnet34
141. resnext26ts
142. resnext50_32x4d
143. sebotnet33ts_256
144. sehalonet33ts
145. selecsls60b
146. semnasnet_075
147. semnasnet_100
148. seresnet152d
149. seresnet33ts
150. seresnet50
151. seresnext26d_32x4d
152. seresnext26t_32x4d
153. seresnext26ts
154. seresnext50_32x4d
155. skresnet18
156. skresnet34
157. skresnext50_32x4d
158. spnasnet_100
159. ssl_resnet18
160. ssl_resnet50
161. ssl_resnext101_32x16d
162. ssl_resnext101_32x4d
163. ssl_resnext101_32x8d
164. ssl_resnext50_32x4d
165. swin_base_patch4_window12_384
166. swin_base_patch4_window7_224
167. swsl_resnet18
168. swsl_resnext101_32x4d
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169. swsl_resnext101_32x8d
170. swsl_resnext50_32x4d
171. tf_efficientnet_b0
172. tf_efficientnet_b0_ap
173. tf_efficientnet_b0_ns
174. tf_efficientnet_b1
175. tf_efficientnet_b1_ap
176. tf_efficientnet_b1_ns
177. tf_efficientnet_b2
178. tf_efficientnet_b2_ap
179. tf_efficientnet_b2_ns
180. tf_efficientnet_b3
181. tf_efficientnet_b3_ap
182. tf_efficientnet_b3_ns
183. tf_efficientnet_b4
184. tf_inception_v3
185. tf_mixnet_s
186. tf_mobilenetv3_small_minimal_100
187. tinynet_a
188. tnt_s_patch16_224
189. tv_resnet50
190. tv_resnext50_32x4d
191. twins_pcpvt_base
192. twins_svt_base
193. vgg16
194. vgg16_bn
195. visformer_small
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