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ABSTRACT
Advances in data mining and knowledge discovery have
transformed the way Web sites are designed. However, while
visual presentation is an intrinsic part of the Web, traditional
data mining techniques ignore render-time page structures
and their attributes. This paper introduces design mining for
the Web: using knowledge discovery techniques to under-
stand design demographics, automate design curation, and
support data-driven design tools. This idea is manifest in
Webzeitgeist, a platform for large-scale design mining com-
prising a repository of over 100,000 Web pages and 100 mil-
lion design elements. This paper describes the principles driv-
ing design mining, the implementation of the Webzeitgeist
architecture, and the new class of data-driven design applica-
tions it enables.
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INTRODUCTION
Web knowledge discovery and data mining [23] have trans-
formed the way people build and evaluate Web sites [15], and
the way that consumers interact with them. The information
gained from Web mining drives search, e-commerce, inter-
face development, network architectures, online education,
social science, and more [16].

Web data mining typically comprises three domains: usage
mining, or click analysis [32]; content mining, or text analy-
sis [24]; and structure mining, or link analysis [8]. Together,
these techniques mine the content contained in a Web page,
but ignore that content’s presentation. In fact, most mining
and knowledge discovery systems discard style and render-
ing data [39, 33]. This raises the question: what could we
learn from mining design?
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Figure 1. Webzeitgeist, a scalable platform for Web design mining,
supplements the data used in traditional Web content mining (yellow)
with information about the visual appearance and structure of pages
(blue) to enable a host of new design applications (green).

This paper introduces design mining for the Web (Figure 1).
With billions of extant pages—each comprising a concrete
example of human creativity and aesthetics—the Web pro-
vides an opportunity to learn about design on a truly massive
scale [18]. This paper demonstrates that applying knowledge
discovery techniques to Web design data can help users un-
derstand design demographics, automate design curation, and
support new data-driven design interactions.



These ideas are manifest in Webzeitgeist,1 a software platform
for mining and machine learning on Web design. Webzeit-
geist comprises a repository of Web pages, processed into
data structures that facilitate large-scale design knowledge
extraction. The Webzeitgeist architecture is based on four un-
derlying principles—scalability, extensibility, completeness,
and consistency—and optimized for three common use cases:
direct access to specific page elements, query-based access to
identify a set of page elements which share common proper-
ties, and stream-based access to the repository as a whole for
large-scale machine learning and statistical analysis [12].

Webzeitgeist’s repository is populated via a bespoke Web
crawler, which requests pages through a specialized caching
proxy backed by a flexible data store. As each page is crawled
and rendered, its resources are versioned and saved, and its
Document Object Model (DOM) tree is snapshotted to pro-
duce a complete, static record of the page’s design. Then,
a set of semantic and visual features describing each DOM
node are computed in a post-process and stored. Client appli-
cations access the repository through a RESTful API [30].

This paper discusses the principles that enable large-scale
Web design mining, the implementation of the Webzeitgeist
architecture, the repository crawled from the Web, and the
API that exposes it. In addition, we demonstrate the util-
ity of the platform by describing several data-driven design
applications, including statistical analysis of design patterns,
design-based search, and design-driven machine learning.

PRINCIPLES FOR DESIGN MINING
To support design mining applications, the Webzeitgeist ar-
chitecture is predicated on four underlying principles.

Scalability. In rich visual domains like Web design, the util-
ity of data mining critically depends on the size of the corpus.
In a space with thousands of parameters, millions of examples
are necessary to extract meaningful statistics or find relevant
examples during search [10, 31]. Webzeitgeist, therefore, is
designed to scale to millions of distinct page elements. Vi-
sual and semantic features are precomputed for fast access,
stored in a relational database to facilitate complex queries,
and duplicated in a key-value store for efficient streaming. To
eliminate redundant storage of shared page resources, Web-
zeitgeist employs Rabin fingerprint hashing [29]. Addition-
ally, the Webzeitgeist server uses a large memory pool to
minimize disk access, backed by a hardware RAID controller
with striping to make disk access fast when it does occur.

Extensibility. Since Webzeitgeist provides a general plat-
form for design mining, not all of its eventual uses can be
presently foreseen. Thus, a modular architecture facilitates
the addition of new data, features, and functionality. To sup-
port transparent updates, two versions of the data store exist
at all times: a production version that is exposed to exter-
nal applications, and a staging version where new pages are
added during crawling and features are computed. To min-
imize code and data dependencies, individual features are
implemented as independent C++ dynamic plugin libraries.
1Webzeitgeist is a portmanteau intended to evoke the “spirit” of a
Web site.

The post-process communicates with the data store through
the public API, allowing implementation details to change as
long as interfaces are preserved.

Completeness. Most Web mining employs static page anal-
ysis: issuing an HTTP GET request for a given URL, storing
the returned HTML, and parsing it [21]. To mine the design
of Web pages, Webzeitgeist must identify and capture every
resource and DOM property that contributes to a page’s vi-
sual appearance. Since render-time visual properties cannot
be determined through static page source analysis, Webzeit-
geist uses a layout engine to process retrieved HTML into a
DOM tree, and a proxy server to dynamically intercept all the
resource requests made by the engine during this process.

Consistency. Dynamically-generated content poses another
complication for design mining. DHTML and client-side
scripting allow arbitrary code to modify the DOM based on
requests made to external resources. Thus, it is nearly impos-
sible to archive pages in a format that guarantees reproducible
rendering in a browser without altering their source [28, 2].
This ephemerality frustrates many machine learning and sta-
tistical analysis applications, which expect data to remain
consistent between accesses. Webzeitgeist, therefore, renders
a canonical view of each page during crawling, and serializes
the resultant DOM and all of its properties to the data store.
Client applications and feature computations access this static
snapshot of a page’s design instead of interacting with the
layout engine directly, and can query render-time properties
without having to re-render the page.

IMPLEMENTATION
The Webzeitgeist architecture comprises five integrated com-
ponents: the Web crawler, the proxy server, the data store, the
post-process, and the API (Figure 2). The crawler loads pages
through the proxy, which writes them to the data store. Post-
processes then run on the stored pages to compute high-level
features and data structures, after which client applications
can access the repository through the API.

Web Design Crawler
The Web crawler consists of a set of parallel browser pro-
cesses, which load pages from the Web to add them to the
Webzeitgeist repository. The crawler builds a queue of URLs
from a seed list. At each stage of the crawl, a browser process
dequeues a URL, checks that it is not already in the reposi-
tory, and requests the corresponding page. Once the page is
downloaded, its HTML is parsed, and all external links are
extracted and added to the queue. The Webzeitgeist crawler
loads each page in a Webkit browser window [3], computes
its DOM tree, and renders it. This rendering and the com-
puted DOM are then saved in the staging store.

Caching Proxy Server
To identify and store a page’s resources, the system routes all
browser requests through a custom Web proxy. The proxy
sits between the Web and the crawler, and connects directly
to the Webzeitgeist data store. The proxy intercepts each re-
source request made by a page, downloads it from the Web,
and hashes its contents. If the file does not already exist in
the store, it is added.
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Figure 2. The Webzeitgeist architecture. A bespoke Web crawler requests pages through a caching proxy, and renders them in a set of browser
threads. The proxy saves requested resources in a NoSQL key-value store, while the crawler writes the complete DOM tree for each page into
a relational SQL database. Then, a set of post-process scripts are run to compute high-level features and data-structures over the stored pages.
Client applications access the repository through a RESTful API.

The proxy server is also responsible for storing the graph
structure of page-resource relationships. Since HTTP is a
stateless protocol, this requires using custom HTTP headers
to associate each resource request with the page that origi-
nated it. When the crawler requests a page, the data store
generates a unique identifier and passes it back in the response
header. The crawler then uses this ID to label each subsequent
request the page makes to the proxy.

Two additional headers determine how the proxy services re-
quests: adding them to the store during the crawl, or serving
them directly from the database during retrieval. In the event
that an application tries to retrieve a URL that does not exist
in the data store, the proxy server responds with a 404 - PAGE
NOT FOUND error.

Feature Post-processes
Once a page has been downloaded, converted to a DOM, ren-
dered, and stored, a set of post-processes are run. First, Web-
zeitgeist computes a visual hierarchy from the DOM, discard-
ing nodes that do not contribute to the page’s rendered ap-
pearance and re-parenting nodes to ensure that parent-child
relationships in the hierarchy correspond to visual contain-
ment on the page [17]. Then, the system computes a set of
semantic and computer vision features over each element in
the hierarchy and stores them (see Figure 3).

Next, the post-process coalesces each node’s visual, seman-
tic, and render-time features into a vector descriptor, exposing
page properties in a convenient form for design mining appli-
cations. Numeric features are normalized to the range [0, 1],
and string-based attributes are binarized based on their pos-
sible values to generate dictionary-length bit vectors. After
this conversion, each page node is associated with a 1679-
dimensional descriptor consisting of 691 render-time HTML
and CSS properties computed by the DOM, 960 GIST scene
descriptors computed on the node’s rendering [26], and 28
structural and computer vision properties.

After the feature vectors are computed, the post-process re-
structures the table in which DOM properties are stored. Dur-
ing the crawl, DOM tree data is added to a wide table which
facilitates fast insertions but results in slow retrieval; parti-
tioning this table into a star schema reduces retrieval times by
an order of magnitude [38]. After this restructuring, the post-
process migrates the data store from the staging environment
to production.

Data Store
The Webzeitgeist data store comprises two databases: a
NoSQL database for page resources, binary data, and the vec-
tor descriptors for page nodes; and a relational SQL database
for DOM nodes and properties, the visual page hierarchies,
and the associated vision and semantic feature values.

The NoSQL database is a MongoDB instance [1], which pro-
vides fast access to binary files and structures too large to be
efficiently stored in SQL tables, while simultaneously sup-
porting dynamic queries and aggregation. This database con-
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Figure 3. The semantic and computer vision features that Webzeit-
geist computes over page elements.



tains the full HTML of every crawled page, its resources, and
the high-dimensional feature descriptor for each visual hier-
archy node.

The relational database is a MySQL instance [27], comprising
five tables: PROXY CONTENT, PROXY LINKS, DOM NODES,
VISUAL BLOCKS, and FEATURES (Figure 4). The PROXY
CONTENT table contains metadata for every URL requested
by pages during crawling, describing where the resource is
from, its identifier in the NoSQL store, when it was retrieved,
and a Rabin fingerprint hash of its contents. The PROXY
LINKS table associates pages with a list of the resources upon
which they depend. The DOM NODES table contains a record
of each DOM node encountered in the crawl, along with
pointers to its parent page and node; its type, name, value, and
inner HTML; and all 258 render-time DOM attributes defined
by the HTML4 and CSS3 standards [37, 36]. The VISUAL
BLOCKS table contains the page elements that result from the
visual segmentations performed during post-processing. The
FEATURES table stores the visual and semantic features com-
puted for each such block. For fast retrieval, tables are denor-
malized with replicated Page, DOM, and Block IDs.

API
Clients access the Webzeitgeist repository through a REST-
ful API, loading the appropriate endpoint URL and receiving
JSON data in return [5]. Three modes are available for re-
questing data. The first allows direct access to design prop-
erties based on unique identifiers. The second allows clients
to stream batches of data from the repository with a single
request.

For more complex access patterns, the API also provides
a custom JSON-based design query language (DQL). DQL
predicates allow for filtering based on combinations of DOM
attributes and computed visual features. When issuing
queries, the client can also specify a list of properties that
should be returned by the API call, keeping result sets suc-
cinct. The API transparently converts DQL queries into SQL
and Mongo Query Language, sanitizes them to prevent injec-
tion attacks, and returns the results in JSON.

Server Hardware
The Webzeitgeist repository is hosted on a twelve-core
2.4GHz Intel Xeon server to allow complex DQL queries to
be executed efficiently. The server contains 48 GB of RAM to
facilitate caching and ensure that the SQL index fits in mem-
ory. The server’s 4TB data store consists of fourteen 600GB
15K RPM SAS drives in a RAID 10 configuration, backed
by a hardware RAID controller with a 1GB cache. The drive
array is capable of sustaining 6GB/s throughput when data is
being streamed from disk.

THE WEBZEITGEIST DATASET
The Webzeitgeist crawl was seeded with 20 URLs, includ-
ing the Alexa Top 500, the Webby Awards gallery, and
popular design blogs. To build a diverse repository, pages
were crawled in a breadth-first order, self-referential domain
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The Webzeitgeist crawl was a computationally intensive task,
requiring more than 35 CPU days of processing. As a
representative example, the CHI 2013 homepage http://

chi2013.acm.org references two style sheets, four JavaScript
files, and five images for a total of 480KB of raw content. The
crawler downloaded the page on September 13th, 2012, in 3.5
seconds. The DOM, which comprised 251 nodes, was com-
puted in 0.1 seconds and stored via the API in 0.47 seconds.
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Figure 5. The 295 distinct cursors in the Webzeitgeist repository, fetched in 47.8 seconds. This query searches the CSS cursor property on
DOM nodes, looks up the ID in the PROXY CONTENT table, and fetches the associated file from NoSQL.

The visual segmentation algorithm ran for 2ms, producing 61
visual blocks; visual feature computation ran for 13.53 sec-
onds. Writing this segmentation and the associated features
to the database took another 1.04 seconds, for a total process-
ing time of 18.64 seconds.

DESIGN MINING IN ACTION
The Webzeitgeist design mining platform enables content
producers to answer questions about design practice and soft-
ware developers to build next-generation design tools. De-
signers can query Webzeitgeist to understand design demo-
graphics and search for examples of design patterns and
trends [7, 11], without relying on manual curation. Ap-
plication developers can apply machine learning techniques
to Web design problems without incurring the overhead of
crawling, rendering, and sanitizing Web data. Webzeitgeist
significantly lowers the barrier to data-driven Web design, fa-
cilitating analysis on a scale 50–300 times larger than prior
work [14, 31].

Design Demographics
Designers often seek to understand the space of options along
a particular design axis [20]. For instance, a designer who
wants to customize the cursor on her Web page might look at
a gallery of cursors used on other pages for inspiration. We
can query Webzeitgeist to return all the distinct cursors in the
repository:

POST, /v1/dom.json
query = {
  "$select": [
    {"@styles": {"$distinct": "cursor"}
  ]
}

This DQL query—which executed in 47.8 seconds—first
finds cursors by examining the CSS cursor property across
DOM nodes, and then fetches the corresponding files from
the NoSQL database. A “cursory” inspection of the 295
results shows that arrows, hands, cartoon characters, and
celebrity faces are all popular choices (Figure 5).

Webzeitgeist can answer similar questions about popular text
color choices, for instance by computing a cumulative distri-
bution function over the CSS color property:

0.3

0.7

The forty most popular text colors in the database account for
nearly 70 percent of all text color; most are shades of grey.

Webzeitgeist affords the ability to examine distributions over
both page- and node-level Web properties. For instance,
an information architect might use Webzeitgeist to compute
statistics on the visual complexity of pages. Figure 6 (top
row) shows that the mode depth of a page’s DOM tree is six,
and that most pages contain between 50 and 200 DOM nodes.
To investigate the cause of the sharp spike in the latter his-
togram, the architect can request IDs for pages with only a
single DOM node and inspect their HTML: unsurprisingly,
these pages are predominantly Flash-based.

Similarly, a designer might wish to inspect common prop-
erties for individual page assets to guide the design of new
content. Calculating a histogram over the aspectRatio of vi-
sual nodes reveals that there are many square elements, but
that page elements, on average, are wider than they are tall
(Figure 6, bottom left). Computing a histogram over the CSS
opacity property and examining values less than 1, reveals
sharp peaks at .5, .65, .75, and .8 (Figure 6, bottom right).

Since Webzeitgeist stores HTML properties in addition to de-
sign data, we can also use the repository to revisit HTML
demographics in a new way. In 2005, Google released the
results of a large-scale survey of popular HTML class

names [9]. Webzeitgeist allows us to take this study one step
further, and understand the relationship between static HTML
properties and dynamic render-time ones. Since Webzeitgeist
records the render-time bounding box for each DOM node,
we can compute spatial probability distributions for the most
popular CSS selectors (Figure 7). The striking patterns that
result indicate that the visual positions and semantic roles of
some page elements are highly correlated.

# 
of

 p
ag

es

0K

8K

16K

0 4 8 12 16
depth of hierarchy

0K

2.5K

5K

0 200 400 600
# of nodes in hierarchy

# 
of

 p
ag

es

0M

0.7M

1.4M

0 5 10 15 20 25# 
of

 n
od

es

aspect ratio

0K

71K

142K

0 0.3 0.6 0.9
opacity

# 
of

 n
od

es

5k

2.5k

0k

16k

8k

0k

142k

71k

0k

1.4m

0.7m

0m
.3 .6 .9
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Figure 7. Spatial probability distributions for frequently occur-
ring HTML id and class attributes demonstrate striking visual
correlations.

Design Queries
Designers are often interested in understanding the context
of particular patterns and trends. Many design blogs main-
tain small, curated sets of examples showcasing notable Web
design techniques.

To give designers more powerful search and collection capa-
bilities, Webzeitgeist introduces the ability to quickly create
dynamic collections that exhibit particular design character-
istics. For instance, one distinctive technique discussed on
design blogs is the use of long, scrolling horizontal layouts.

Figure 9. Selections from some of the 4943 pages containing
<CANVAS> elements in the Webzeitgeist repository, demonstrating
interactive interfaces, animations, graphs, reflections, rounded cor-
ners, and custom fonts.

To find such pages, we queried Webzeitgeist for pages with
aspectRatio greater than 10.0:
POST, /v1/pages.json
query = {
  "$select": [{"$distinct": "page_id"}],
  "$where" : [
    {"@visual": {"aspectRatio": {"$gt": 10} } }
  ]
}

This query produced 68 horizontally-scrolling pages in 1.1
seconds. Figure 8 shows a few representative results.

Querying Webzeitgeist with constraints based on HTML
markup can also shed light on design trends. The W3C de-
scribes the <CANVAS> element—introduced in HTML5—
as a scriptable graphics container. The specification, how-
ever, gives little insight into how the tag is actually used.
Webzeitgeist returns all 201,658 <CANVAS> elements in the
database in 2.4 minutes. Figure 9 shows representative uses.

Figure 8. Four of the 68 query results for pages with horizontal layouts. Blogs, image/photo galleries, and vector art pages are a few of the
representative styles in the results set.



Figure 10. Query results for nodes containing large typography,
demonstrating large text in logos, site titles, hero graphics, and back-
ground effects. The query identified 6856 DOM nodes from 1657 dis-
tinct pages, and executed in 56 seconds.

Webzeitgeist allows us to investigate another problematic
aspect of Web design: typography. Although the CSS
@font-face rule was introduced in 1998 [6], technical and
licensing issues with embedding custom Web fonts have tra-
ditionally relegated complex typographic effects to images.
We can use Webzeitgeist to search for examples of promi-
nent Web font typography, querying for nodes with a CSS
font-size property greater than 100 pixels. Figure 10
shows a few of the 6856 results, which occur in only 1657
distinct pages.

We can build more complex queries by specifying more
constraints. To learn the different ways in which semi-
transparent overlays are used, we queried for nodes with

Figure 11. Query results for semi-transparent overlays. The query
identified 9878 DOM nodes from 3435 distinct pages, and executed
in 48.1 seconds. Semi-transparent overlays are often used on top of
photographs, either as a way to display content over of a busy photo-
graphic background (top) or to frame captions (bottom).

a solid background color where the alpha value of the
CSS background-color property is between 0 and 1
(Figure 11).

We can also use Webzeitgeist to construct queries over high-
level design concepts. Suppose a designer wants to browse
“search engine-like” pages. This concept is loaded with de-
sign constraints, but we can approximate it in DQL as a query
for pages with a centered <INPUT> element and low visual
complexity:

POST, /v1/pages.json
query = {
  "$select": [{"page_id": 1}],
  "$where": [
    {
      "@dom": {
        "tagName": "INPUT",
        "type": "text",
      "@visual": {
        "leftSidedness": {"$or": {"$gte": 0.4}, {"$lte":0.6}},
        "topSidedness":  {"$or": {"$gte": 0.4}, {"$lte":0.6}}
      }
    },
    {"@visual": {"$cnt": {"$lt": 50} } }
  ]
}

Figure 12 shows a few results from this query.

Similarly, attribute queries can be composed to search for
pages with specific visual layouts. Figure 13 shows a sample
layout with a large header, a top navigation bar, and a large
body text node. We can encode this layout in a DQL query
that searches for pages with a header that takes up more than
20 percent of the page’s area, a navigation element that is po-
sitioned in the top 10 percent of the page’s height, and a text
node that contains more than 50 words. This example illus-
trates the kinds of applications that Webzeitgeist might en-
gender: imagine a search interface that automatically formu-
lates queries from sketches like the one shown in the figure.

Figure 12. Query results for “search engine” pages: roughly centered
(vertically and horizontally) text INPUT elements, and fewer than 50
visual elements on the page. This query produced 209 pages and
executed in 3.9 minutes. Some login and signup pages are also re-
turned (bottom right).



top nav bar

layout query

large 
text

block

large header

Figure 13. Five of the 20 search results for the three-part DQL layout query visualized on the left. The query, which executed in 2.1 minutes,
returns pages that share a common high-level layout, but exhibit different designs.

Machine Learning
Webzeitgeist also enables a new kind of design-based ma-
chine learning. For the first time, applications can stream
structured visual descriptors for page elements from a cen-
tral repository. Moreover, Webzeitgeist’s extensible architec-
ture allows new data to be collected and integrated with the
repository for supervised learning applications, for instance
via crowdsourcing.

Classification. Lim et al. [22] used Webzeitgeist as a back-
end to train structural semantic classifiers for concepts like
ARTICLE TITLE, ADVERTISEMENT, and PRODUCT IMAGE.
In an online study, they collected a set of more than 20,000 se-
mantic labels over more than 1000 distinct pages. They then
used the descriptors associated with page elements to train 40
binary Support Vector Machine classifiers, reporting an aver-
age test accuracy of 77 percent. In the future, these and other
similar classifiers could be used to support Web accessibility,
guide attempts to “semantify” the HTML standard, and allow
designers to search for pages that match a given visual “feel.”

Metric Learning. Machine learning techniques can also
be used to enable example-based search over the repository.
Using Lim et al.’s label data, we induced a distance met-
ric in the 1679-dimensional descriptor space using OASIS,
a metric-learning algorithm originally developed for large-
scale image comparison [4]. The method takes as input sets
of identically-labeled page elements, and attempts to learn
a symmetric positive-definite matrix that minimizes interset
distances. Once learned, this metric can be used to perform
query-by-example searches on page regions via a nearest-
neighbor search in the metric space. These nearest-neighbor
computations can be performed in realtime via locality sensi-
tive hashing [13].

Example-based search provides a powerful mechanism for
navigating complex design spaces like the Web [31]. Fig-
ure 14 shows three example queries and their top results,
demonstrating how Webzeitgeist can be used to search for al-
ternatives for a given design artifact, and to identify template
reuse between pages. The utility of this search interaction
critically depends on the full Webzeitgeist feature space. For

comparison, Figure 15 shows nearest-neighbor results for the
top query in Figure 14 using only the vision-based GIST de-
scriptors. While these elements are visually reminiscent of
the query, they bear little structural or semantic relation to it.

DISCUSSION AND FUTURE WORK
This paper demonstrates—for the first time—the value of
large-scale mining of design data, and offers a new class of
data-driven problem-solving techniques to the design com-
munity. While the paper showcases several concrete design
interactions, we imagine that the applications that eventually
arise from design mining will greatly outstrip our power to
predict them.

There are a number of directions for future work. Scaling
the database by several orders of magnitude would increase
the accuracy and utility of many design-mining applications.
While the current indexing strategy for Webzeitgeist should
scale to about five million pages, crawling a more substan-
tial portion of the Web would require porting the infrastruc-
ture to a distributed computing and storage platform. More
flexible and powerful backing stores (for instance, graph
databases [25]) may also make it easier to formulate complex
queries that span multiple levels of page hierarchy (e.g., “Find
all the nodes whose children are all <IMAGE> elements”).

In addition to crawling more pages, altering the crawl’s selec-
tion policy to capture additional information from each vis-
ited site could provide a more holistic view of Web design
practice. By spoofing USER-AGENT headers and requesting
pages with browser windows of varying sizes, the repository
could detect responsive Web designs, or pages with layouts
that adapt to the viewing environment. This type of mining
would help users understand design patterns across different
form factors (e.g., mobile, tablet, and desktop). Expanding
Webzeitgeist to support site-level mining by sampling several
pages from each visited domain could help designers analyze
how individual page elements are reused and adapted. Aggre-
gating multiple versions of pages over time could allow users
to build data-driven models of Web design evolution [2, 35].
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Figure 14. Top search results from querying the repository using the learned distance metric and three query elements. These results demonstrate
how Webzeitgeist can be used to search for design alternatives (top, middle), and to identify template re-use between pages (bottom).

Perhaps the most exciting avenue for future work is using the
repository to realize new machine learning applications, or
reimplementing existing methods at scale [14, 31, 34]. Ex-
ploiting model and hardware parallelism has made it feasi-
ble to train models with billions of parameters on Web-scale
datasets with millions of examples, leading to a number of
breakthroughs in unsupervised learning [19]. In addition, us-
ing the Webzeitgeist platform to bootstrap crowdsourced data
collection may enable a host of new supervised learning ap-
plications.

We hope that Webzeitgeist will lower the barrier to build-
ing data-driven design applications and engender a new
class of Web design tools. For more information, please visit
http://hci.stanford.edu/research/webzeitgeist.
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