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Figure 1: VizNet enables data scientists and visualization researchers to aggregate data, enumerate visual encodings, and crowd-
source efectiveness evaluations. 

ABSTRACT 

Researchers currently rely on ad hoc datasets to train auto-
mated visualization tools and evaluate the efectiveness of 
visualization designs. These exemplars often lack the char-
acteristics of real-world datasets, and their one-of nature 
makes it difcult to compare diferent techniques. In this pa-
per, we present VizNet: a large-scale corpus of over 31 million 
datasets compiled from open data repositories and online vi-
sualization galleries. On average, these datasets comprise 17 
records over 3 dimensions and across the corpus, we fnd 51% 
of the dimensions record categorical data, 44% quantitative, 
and only 5% temporal. VizNet provides the necessary com-
mon baseline for comparing visualization design techniques, 
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and developing benchmark models and algorithms for au-
tomating visual analysis. To demonstrate VizNet’s utility as 
a platform for conducting online crowdsourced experiments 
at scale, we replicate a prior study assessing the infuence of 
user task and data distribution on visual encoding efective-
ness, and extend it by considering an additional task: outlier 
detection. To contend with running such studies at scale, we 
demonstrate how a metric of perceptual efectiveness can be 
learned from experimental results, and show its predictive 
power across test datasets. 
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1 INTRODUCTION 

A primary concern in visualization is how to efectively en-
code data values as visual variables. Beginning with Cleve-
land and McGill’s seminal work [11], researchers have stud-
ied this question of graphical perception by conducting hu-
man subjects experiments. And increasingly, researchers 
are seeking to operationalize the guidelines such studies 
produce using handcrafted rule-based systems [49, 73] or 
learned models [18, 27, 41]. 
To increase the scale and diversity of the subject pool, 

modern studies have eschewed traditional laboratory setups 
in favor of crowdsourcing platforms [24]. But a constraining 
factor for true ecological validity remains. Collecting, curat-
ing, and cleaning data is a laborious and expensive process 
and, thus, researchers have relied on running studies with ad 
hoc datasets. Such datasets, sometimes synthetically gener-
ated, do not display the same characteristics as data found in 
the wild. Moreover, as one-of exemplars, their use makes it 
difcult to compare approaches against a common baseline. 
Large-scale databases (such as WordNet [47] and Ima-

geNet [17]) have proven instrumental in pushing the state-of-
the-art forward as they provide the data needed to train and 
test machine learning models, as well as a common baseline 
for evaluation, experimentation, and benchmarking. Their 
success has led researchers to call for a similar approach 
to advance data visualization [3, 20]. However, insufcient 
attention has been paid to design and engineer a centralized 
and large-scale repository for evaluating the efectiveness of 
visual designs. 

In response, we introduce VizNet: a corpus of over 31 
million datasets (657GB of data) compiled from the web, 
open data repositories, and online visualization platforms. 
In characterizing these datasets, we fnd that they typically 
consist of 17 records describing 3 dimensions of data. 51% 
of the dimensions in the corpus record categorical data, 44% 
quantitative, and only 5% measure temporal information. 
Such high-level properties, and additional measures such 
as best statistical ft and entropy, contribute a taxonomy of 
real-world datasets that can inform assessments of ecological 
validity of prior studies. 

We demonstrate VizNet’s viability as a platform for con-
ducting online crowdsourced experiments at scale by repli-
cating the Kim and Heer (2018) study assessing the efect 
of task and data distribution on the efectiveness of visual 
encodings [29], and extend it with an additional task: outlier 
detection. While largely in line with the original fndings, 

our results do exhibit several statistically signifcant difer-
ences as a result of our more diverse backing datasets. These 
diferences inform our discussion on how crowdsourced 
graphical perception studies must adapt to and account for 
the variation found in organic datasets. VizNet along with 
data collection and analysis scripts is publicly available at 
https://viznet.media.mit.edu. 
Data visualization is an inherently combinatorial design 

problem: a single dataset can be visualized in a multitude of 
ways, and a single visualization can be suitable for a range 
of analytic tasks. As the VizNet corpus grows, assessing 
the efectiveness of these (data, visualization, task) triplets, 
even using crowdsourcing, will quickly become time- and 
cost-prohibitive. To contend with this scale, we conclude by 
formulating efectiveness prediction as a machine learning 
task over these triplets. We demonstrate a proof-of-concept 
model that predicts the efectiveness of unseen triplets with 
non-random performance. Our results suggest that machine 
learning ofers a promising method for efciently annotating 
VizNet content. VizNet provides an important opportunity 
to advance our understanding of graphical perception. 

2 RELATED WORK 

VizNet is motivated by research in graphical perception, au-
tomated visualization based on machine learning, and crowd-
sourced eforts towards data collection for visualization re-
search. VizNet also draws on the digital experimentation 
capabilities of large-scale machine learning corpora. 

Graphical Perception 

Visual encoding of data is central to information visualiza-
tion. Earlier work has studied how diferent choices of vi-
sual encodings such as position, size, color and shape in-
fuence graphical perception [12], the decoding of data pre-
sented in graphs. Through human subjects experiments, re-
searchers have investigated the efects of visual encoding 
on the ability to read and make judgments about data rep-
resented in visualizations [12, 25, 32, 37, 64–66, 70]. Con-
sequently, prior research has provided rankings of visual 
variables by user performance for nominal, ordinal, and nu-
merical data [12, 37, 42, 43, 63]. Researchers have also studied 
how design parameters beyond visual encoding variables 
such as aspect ratio [9, 23, 67], size [10, 26, 34], chart varia-
tion [33, 69], and axis labeling [68] impact the efectiveness 
of visualizations. Previous studies have evaluated how user 
task, data types and distributions infuence the efectiveness 
of charts [56] and visual encoding variables [29]. 

Graphical perception experiments in current practice are 
typically conducted on single datasets with small size and 
variety, lacking the characteristics of real-world data. Studies 
based on ad hoc datasets may provide useful results but are 
inherently partial and difcult to generalize, reproduce and 
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compare against. VizNet provides a corpus of real-world 
tables from diverse domains to make it easier for researchers 
to run visualization design evaluation studies at scale. VizNet 
is sufciently rich both in size and variety to satisfy the 
data needs of a substantial number of experimental designs, 
facilitating the comparison of and reasoning about results 
from diferent experiments on a common baseline. 

Data Collection for Visualization Research 

Although researchers recognize the need for data collection 
and generation to facilitate evaluation across a broad range 
of real datasets [59, 61], little efort has been made to create 
centralized corpora for data visualization research. Beagle [4] 
has been used to scrape over 41,000 visualizations from the 
web. Similarly, the MassVis [5] database was compiled by 
scraping over 5,000 visualizations from the web and par-
tially annotating them. Lee et al. [62] recently extracted and 
classifed 4.8 million fgures from articles on PubMed Cen-
tral. However, these datasets do not include the raw data 
represented by the visualizations, limiting their utility for 
generalized and reproducible visualization research. 

Automated Visualization using Machine Learning 

Data-driven models based on responses elicited through hu-
man subjects experiments are common in the psychophysics 
and data visualization literature. For example, low-level per-
ceptual models such as the Weber-Fechner Law, Stevens’ 
Power Law, the CIELAB color space, and perceptual ker-
nels [15] all ft various models to empirical user data, inform-
ing low-level visual encoding design. Earlier researchers 
propose using such models to generate and evaluate visual-
izations (e.g., [15, 16, 60]). 
In a natural extension to these earlier ideas, researchers 

have recently introduced machine learning-based systems 
for automated visualization design. Data2Vis [18] uses a 
neural machine translation approach to create a sequence-
to-sequence model that maps JSON-encoded datasets to Vega-
lite visualization specifcations. Draco-Learn [49] learns trade-
ofs between constraints in Draco. DeepEye [41] combines 
rule-based visualization generation with models trained to 
classify a visualization as “good" or “bad" and rank lists of 
visualizations. VizML [27] uses neural networks to predict 
visualization design choices from a corpus of one million 
dataset-visualization pairs harvested from a popular online 
visualization tool. Results from this recent work are promis-
ing but also point at the need for large-scale real-world train-
ing data with sufcient diversity [57]. VizNet addresses this 
research gap and provides 31 million real-world datasets 
from everyday domains and can be used for training ma-
chine learning models to drive visualization systems. 

Machine Learning Corpora 

Recent developments of large-scale data repositories have 
been instrumental in fostering machine learning research. 
Access to rich, voluminous data is crucial for developing suc-
cessful machine learning models and comparing diferent ap-
proaches on a common baseline. To this end, researchers have 
created centralized data repositories for training, testing, and 
benchmarking models across many tasks. Publicly available 
repositories such as ImageNet [17], SUN [74], COCO [39], 
etc. are one of the main drivers behind the rapid advances in 
deep learning. VizNet is informed and inspired by the digital 
experimentation capabilities of large-scale data repositories 
in machine learning research. 

3 DATA 

VizNet incorporates four large-scale corpora, assembled from 
the web, online visualization tools, and open data portals. 

Corpora 

The frst category of corpora includes data tables harvested 
from the web. In particular, we use horizontal relational 
tables from the WebTables 2015 corpus [6], which extracts 
structured tables from the Common Crawl. In these tables, 
entities are represented in rows and attributes in columns. 

The second type of corpus includes tabular data uploaded 
by users of two popular online data visualization and analysis 
systems. Plotly [53] is a software company that develops 
visualization tools and libraries. Once created, Plotly charts 
can be posted to the Plotly Community Feed [54]. Using the 
Plotly API, we collected approximately 2.5 years of public 
visualizations from the feed, starting from 2015-07-17 and 
ending at 2018-01-06. The second system, ManyEyes [71] 
allowed users to create and publish visualizations through 
a web interface. It was available from 2007–2015, and was 
used by tens of thousands of users [50]. 
The third type of corpus includes public data from the 

Open Data Portal Watch [48, 51], which catalogs and mon-
itors 262 open data portals such as data.noaa.gov from 
CKAN, finances.worldbank.org from Socrata, and open-
data.brussels.be from OpenDataSoft. The majority of 
these portals are hosted by governments, and collect civic 
and social data. 

VizNet aggregates these corpora into a centralized repos-
itory. However, the majority of datasets are from WebTa-
bles. Therefore, in the following sections, we describe each 
corpus individually with 250K randomly sampled datasets, 
to avoid oversampling the WebTable corpus. We combine 
these datasets into a balanced sample of one million datasets, 
which we refer to as the VizNet 1M corpus. 
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Characterization 

Summary statistics and underlying distributions of each of 
the fve corpora are shown in Figure 2. The data type of a 
column is classifed as either categorical, quantitative, or tem-
poral, which we abbreviate as C, Q and T, respectively. This 
data type is detected using a heuristic-based approach that 
incorporates column name and value information. For quan-
titative columns, we use the Kolmogorov-Smirnov test [45] 
to examine the goodness-of-ft of six distributions: the nor-
mal, log-normal, exponential, power law, uniform and chi-
squared distributions. We reject the null hypothesis of a 
distribution ft if the p-value of the associated test is lower 
than the level α = 0.05. If all distributions are rejected at 
α , we consider the distribution to be undefned. If multiple 
distributions are not rejected, we consider the “best" ft to be 
that with the highest p-value. We also report the skewness 
and percent of outliers, defned as data points that fall more 
than 1.5 × IQR below the frst quartile or above the third 
quartile, where IQR is the interquartile range. The statistical 
distribution of categorical columns within each corpus is 
characterized using the normalized entropy. 

4 EXPERIMENT DESIGN 

To evaluate the utility of VizNet as a resource for data sci-
entists and visualization researchers, we conducted an ex-
periment where we frst replicated the Kim and Heer (2018) 
prior study [29] using real-world datasets from the VizNet 
corpus to assess the infuence of user task and data distribu-
tion on visual encoding efectiveness. These datasets were 
sampled to match constraints from the prior study and en-
sure that participants only saw valid data. We then extended 
this experiment by including an additional task on outlier 
detection. Finally, we trained a machine learning model that 
learns the perceptual efectiveness of diferent visual designs 
and evaluated its predictive power across test datasets. 

Replication of Kim and Heer (2018) 
Kim and Heer (2018), “Assessing Efects of Task and Data Dis-
tribution on the Efectiveness of Visual Encodings," conducted 
a crowdsourced experiment measuring subject performance 
(i.e. error rate and response time) across data distributions 
(D), visualization designs (V), and task types (T). The 24 
data distributions characterize trivariate data involving one 
categorical and two quantitative felds (C=1, Q=2) sampled 
from 2016 daily weather measurements [46] according to 
univariate entropies of the quantitative felds, cardinalities, 
and number of records per category. 
The authors employed a mixed design using a within-

subjects treatment for visual encodings and between-subjects 
treatments for tasks and data characteristics. They analyzed 

responses from 1,920 participants on Amazon’s Mechani-
cal Turk (MTurk), who individually completed 96 questions 
and 12 engagement checks, and calculated the absolute and 
ranked performance of diferent (D × V × T) conditions, as 
well as the interaction efects between diferent data char-
acteristics, visual channels, and task types. These results 
extended existing models of encoding efectiveness, such 
as APT [43], and provided valuable insights for automatic 
visualization design systems. 

Datasets 
For this experiment, we sampled VizNet datasets according 
to a procedure that matched constraints from Kim and Heer 
(2018) and ensured that participants only saw valid data 
without missing values. This procedure was developed after 
an initial pilot study with a subset of the corpus in which all 
datasets were manually verifed. 
To begin, we identifed all datasets with more than one 

categorical feld and two quantitative felds (C≥1 and Q≥2). 
Then, we sampled all possible three column subsets with 
exactly one categorical and two quantitative felds (C=1, Q=2). 
Following this sampling, we fltered out datasets using a 
number of constraints. First, we rejected datasets containing 
any null values. Second, we required that the column names 
of all datasets must contain between 1 and 50 ASCII-encoded 
characters. Third, we limited the cardinality (e.g. the number 
of unique groups) of the categorical columns between 3 and 
30. Fourth, we restricted the group names between 3 and 30 
characters, at least one of which is alphanumeric. Lastly, we 
required that each of the groups must contain 3 to 30 values. 
We chose these values to be consistent with the upper and 
lower constraints of Kim and Heer (2018). 
Our sampling procedure resulted in 2,941 valid datasets 

from the Open Data Corpus (100,626 possible combinations), 
6,090 valid datasets from Many Eyes (354,206 combinations), 
1,368 from Plotly (347,387 combinations), and 82,150 from 
a subset of the Webtables corpus (1,512,966 combinations). 
From this set of candidates, we randomly selected 200 can-
didates per visualization specifcation × task condition. We 
use V to denote the number of visualization specifcations 
and T to denote the number of tasks, which leads to 60 such 
conditions (V × T = 12 × 5 = 60). The 200 number of datasets 
sampled from the VizNet corpus is consistent with the 192 
datasets sampled in Kim and Heer (2018). As a result, this 
sampling resulted in 200×12 = 2, 400 datasets per task, 2, 400 
datasets per corpus, and 9, 600 = 2, 400 × 4 total datasets. 

Visual Encodings 
We selected the twelve visual encoding specifcations chosen 
in Kim and Heer (2018). These encodings are specifed using 
the Vega-Lite grammar [58], which specifes plots using a 
geometric mark type (e.g. bar, line, point) and a mapping 
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Figure 2: Summary statistics (top) and distributions (bottom) of the four source corpora and the VizNet 1M corpus. In the 
top table, we report the median number of rows and columns. The Distribution column includes the top three most frequent 
column distributions. Distributions are abbreviated as Norm = normal, L-N = log-normal, Pow = power law, Exp = exponential, 
Unif = uniform, and Und = undefned. The bottom part of the fgure contains distributions describing columns, datasets, and 
the entire corpus. The bars outlined in red represent three column datasets and the subset which contain one categorical and 
two quantitative felds. The clustering of three column (C=1, Q=2) datasets is shown in more detail in Figure 5. 



Figure 3: VizNet user interface for the Compare Values task 
experiment. 

from data felds to visual encoding channels (e.g. x, y, color, 
shape, and size). In particular, Kim and Heer (2018) used 
twelve visualization designs, all of which are scatterplots 
(a point mark) with diferent mappings between data and 
encoding channels. 
We used the Tableau-10 scheme for color encoding cate-

gorical felds with cardinality less than 10, and Tableau-20 
for categorical felds with cardinality greater than or equal 
to 20. For positional encodings, in contrast to Kim and Heer 
(2018), we used a heuristic to determine whether an axis 
should start at zero. If the range of a variable Q is less than 
10% of maximum value 0.1 × |max(Q)|, then we default to 
Vega-lite axis ranges. Based on a pilot study, we found that 
this heuristic was necessary to ensure that no questions were 
prohibitively difcult. 

Tasks 
Following Kim and Heer (2018), we considered 4 visualiza-
tion tasks informed by the Amar et al. (2005) [2] taxonomy 
of low-level analytic activities. Two of those tasks were value 
tasks: Read Value and Compare Values asked users to read 
and compare individual values. The other two tasks were 
summary tasks: Find Maximum and Compare Averages re-
quired the identifcation or comparison of aggregate proper-
ties. Each of these tasks was formulated as a binary question 
(two-alternative forced choice questions). We generated the 
two alternatives using the procedure described in the prior 
study. 

Procedure 

Identical to Kim and Heer (2018), we also employed a mixed 
design incorporating a within-subjects treatment for visual 
encodings and a between-subjects treatment for tasks. Each 
participant answered 9 questions (1 attention check and 8 

real) for each of the 12 visual encodings, presented in a ran-
dom order. Every participant was assigned to a specifc task. 
Unlike Kim and Heer (2018), we did not incorporate dataset 
conditions. Each dataset was selected randomly from the 
pool of 200 datasets per V × T condition. In order to ensure 
reliable human judgment, we followed the process from Kim 
and Heer (2018) and incorporated 12 evenly distributed gold 
standard tasks. The gold standard tasks presented a user 
with a real dataset encoded in the present visual encoding 
condition, and asked what information is presented in the 
visual channel that encodes the frst quantitative column 
(Q1). 

Participants 
Crowdsourcing platforms such as MTurk are widely used 
to recruit participants and conduct online experiments at 
scale [30, 44]. We recruited in total 1,342 MTurk workers 
who were located in the U.S. and had ≥ 95% HIT approval 
rating. 

During the analysis, we included the following criteria to 
ensure the quality of human judgment: we selected subjects 
who accurately answered 100% of the gold standard ques-
tions, had an experimental error rate of less than 60%, and 
can efectively distinguish colors. We had set the gold stan-
dard response exclusion threshold to 100% (i.e., discarding 
responses if even 1 out of these 12 questions was answered 
incorrectly). We have verifed that a more lenient 80% exclu-
sion threshold does not signifcantly change the results. Kim 
and Heer (2018) does not report a dropout rate, making it 
difcult to assess whether and by how much our dropout 
rate difers. We included two Ishihara color blindness plate 
tests [28] along with two pre-screen questions to ensure 
the participants can efectively distinguish colors. A total of 
96.47% reported no vision defciency and were allowed to 
participate in the experiment. This resulted in a total of 624 
participants’ data for in the analysis. 

Of the 624 participants, 43.75% were male, 55.44% female, 
and 0.48% non-binary. 6.38% of the participants had no de-
gree, whereas others had bachelor’s (43.10%), master’s (14.90%), 
Ph.D. (3.04%), associate (14.58%) degrees as well as a high 
school diploma (17.46%). Each participant received 1.00 USD 
in compensation, which we calculated using the average 
times of a pilot study and the same hourly wage of Kim and 
Heer (2018). 

5 RESULTS 
In this section, we describe the results of our experiment, 
compare them with the results of Kim and Heer (2018) [29], 
and demonstrate a machine learning-based approach to pre-
dicting efectiveness from (data, visualization, task) triplets. 
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Comparing Subject Performance 

We frst compared subject performance with the quantita-
tive results of Kim and Heer (2018) by considering aggregate 
error rates and log response times per visualization specif-
cation and task condition (V × T = 12 × 4). Following this, 
we calculated mean error rates with 95% bootstrapped con-
fdence intervals, performed by sampling participants with 
replacement. To analyze the diference of mean error rates 
and response times we conducted permutation tests with 104 

permutations. We test signifcance at a signifcance level of 
α = 0.05 with Bonferroni correction for our m = 48 hypothe-
ses. The results for the error rate and log response times are 
shown in Figure 4. 
The absolute error rates of our replication tend to agree 

with those of Kim and Heer (2018) for the Read Value task, 
and to a lesser extent for the Compare Values task. The rank-
ings of diferent visual encodings are also similar. However, 
for the the summary tasks (Find Maximum and Compare Aver-
ages), our observed error rates depart from those of Kim and 
Heer (2018). Though more data points are needed to draw 
meaningful conclusions, these results suggest that real-world 
data afects error rates for more complex tasks. 

In contrast, the absolute response times in our study seem 
to be systematically longer for all tasks except the Compare 
Values task. However, the relative rankings of diferent en-
coding are consistent with those of Kim and Heer (2018). 

Extending with an Outlier Detection Task 

As suggested by Kim and Heer (2018), investigating addi-
tional task types is a promising direction of future research. 
In particular, tasks with more subjective defnitions, such as 
Cluster and Find Anomalies were not included in Kim and 
Heer (2018). Nevertheless, as outlier detection is one of the 
most important data analysis tasks in practice, it warrants 
further empirical study. We extended the prior work by con-
sidering this latter task of identifying “which data cases in a 
set S of data cases have unexpected/exceptional values.” 
We generated 2,400 datasets using the sampling method-

ology described in the previous section. First, we presented 
users with a defnition of outliers as “observations that lie 
outside the overall pattern of distribution.” Then, using the 
same experiment design, we assessed answers to the ques-
tion “Are there outliers in Q1?” “Yes” and “No” are provided 
as response options. Outliers were determined using the me-
dian absolute deviation (MAD)-based approach described 
in [38], which is robust to varying sample sizes, compared 
to other simple approaches. 

We found that the error rates for the outlier detection task 
are higher compared to the other tasks (see Figure 4). This 
may be due to an inadequate measure of ground truth, incon-
sistent defnitions, or lack of prior training. It is important 
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Figure 4: Bootstrapped means and 95% confdence intervals 
for error rates (left) and log response times (right) across 
tasks and visual encodings for Kim and Heer (2018) original 
data, and our replication on VizNet. We reuse the original 
color encoding of Kim and Heer (2018). Shading indicates a 
statistically signifcant diference. 

to note that the specifcation rankings resemble that of the 
Read Value task: color and size trail behind other encodings 
channels. Conversely, the log response times are signifcantly 
shorter than for other tasks, for all except the faceted charts 
with row encodings. 
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Figure 5: Two-dimensional t-SNE projection of datasets with 
one categorical and two quantitative columns, evenly sam-
pled from Kim and Heer (2018) and the four corpora within 
VizNet, with a perplexity of 75. 

Learning a Model to Predict Efectiveness 
To characterize a dataset, we extracted 167 features: 60 per 
quantitative feld Q, 11 for the categorical feld C, 15 for the Q-
Q pair, 6 for the two C-Q pairs, and 9 which consider all three 
felds. These features characterized summary statistics (e.g. 
coefcient of variance and kurtosis), statistical distributions 
(e.g. entropy and statistical fts), pairwise relationships (e.g. 
correlations and one-way ANOVA p-values), clusteredness 
and spatial autocorrelation. 
We frst decoded diversity within our space of datasets 

using these features. Using principal components analysis, 
we computed 32 principal components which collectively 
explain over 85% of the variance within our dataset. Then, 
we generated a two-dimensional t-SNE projection of these 
principal components, as shown in Figure 5. It is important 
to note that the datasets used in Kim and Heer (2018) [29] 
are highly clustered and separate from the datasets used 
within our replication. This observation is robust for diferent 
numbers of principal components and values of perplexity 
(5-200). 

To predict log completion time we use gradient boosted 
regression trees, a model with strong “of-the-shelf” perfor-
mance. Training on 80% sample of the data, we were able to 
predict log completion times in a 20% hold-out test set with a 
5-fold cross-validated R2 of 0.47, which strongly outperforms 

fit

5-fold CV R2 = 0.4687

Figure 6: Observed log response times (in seconds) vs. those 
predicted by a gradient boosted regression tree. The dotted 
diagonal line denotes a perfect relationship between obser-
vation and prediction. 

baseline models such as K-nearest neighbors and simple lin-
ear regression. A scatter plot of observed vs. predicted values 
for the top performing model is shown in Figure 6. Learning 
curves in Figure 7 indicate that, despite the large number 
of features, our model does not overft on the training set, 
and that there are still gains from increasing the number of 
training samples. 
Kim and Heer (2018) reports the trade-of between re-

sponse time and error rate. To capture this trade-of, we 
created a combined metric from the log response times and 
error rate metrics by partitioning the log response times 
into 20% quantiles, and the error rates into fve bins of equal 
width, for a total of 25 pairs. Then, we characterized each 
(d, v, t) triplet with the associated (response time + error rate) 
pair, and resampled minority classes using the Synthetic Mi-
nority Over-sampling Technique (SMOTE) [7]. Training a 
gradient boosted classifcation tree on the balanced training 
set resulted in a Top-3 prediction accuracy of 52.48%. 

Limitations 
Although we have successfully demonstrated the efective-
ness of VizNet, it is important to acknowledge limitations. 
Replication and reproducibility are essential to advance re-
search [52]. In the experiment, we attempted to replicate 
Kim and Heer (2018) as closely as possible. However, due to 
practical constraints, we introduced clarifying modifcations 
to the question text and interface design. Due to variance 
between crowd workers, we were not able to recruit the 
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Figure 7: Training R2 and 5-fold cross-validation R2 as the 
number of training examples increases. 

same participants; nor do we control for question difculty, 
which is calibrated in Kim and Heer (2018). Most of all, we 
did not exactly replicate the original conditions of the syn-
thetic datasets, which would have limited the amount of 
real-world VizNet datasets available for sampling. Notwith-
standing these limitations, our work provides an important 
direction to understand the opportunities and challenges 
faced in replicating prior work in human-computer interac-
tion and visualization research. 
With respect to extending the experiment to include an 

additional task, we note that outlier detection, unlike the 
other tasks, does not have a defned ground truth. Though 
we used a robust outlier detection method, there may be a 
limitation to any purely quantitative method that does not 
rely on human consensus. The lack of an objective notion of 
outliers and absence of a clear defnition thereof in the ques-
tions, reinforces the inconsistency between ground truth 
and crowdsourced labels presumably partially explaining 
the consistently high error rate. In the context of the ma-
chine learning model, while human judgments can play an 
important role in help predicting perceptual efectiveness, 
crowdsourced training data can be noisy. The current exper-
iment was unable to analyze lower bound requirements of 
quality data, but VizNet’s diverse dataset ofers such oppor-
tunity for future research. 

6 DISCUSSION 

There are several important areas where VizNet makes im-
portant contributions. VizNet provides a noteworthy con-
tribution to advance our knowledge of efective graphical 
perception by enabling scientifc community access to rich 
datasets for visualization learning, experimentation, replica-
tion, and benchmarking. VizNet ofers both the full corpus 
and the sampled corpus of one million datasets (VizNet 1M). 
It further described the dimensions, types, and statistical 
properties of these datasets. The voluminous collection of 
VizNet complements synthetically generated data. Moreover, 

the properties of the VizNet corpus can inform assessments 
of the ecological validity of other corpora from domains 
beyond VizNet. 
Implications of enabling the VizNet interface for the 

scientifc community. We envision that in the long run, 
adoption of a common corpus and benchmarks by the visual-
ization community will facilitate the sharing and comparing 
of results at scale. We have made VizNet publicly available at 
https://viznet.media.mit.edu. A taxonomy in VizNet 
is formed by splitting our corpus frst on the number of 
columns of a datasets, and then on the composition of col-
umn types. Therefore, we should design interactions to help 
users query, flter, sample datasets within this taxonomy (e.g. 
give me all datasets with one categorical, two quantitative, 
and one temporal feld). Moreover, this informs the need 
for supporting keyword search to allow fltering by domain, 
in addition to fltering on other dataset properties (e.g. give 
me highly correlated datasets with exactly two quantitative 
felds). 
Implications of VizNet for replication and experi-

mentation. We replicate Kim and Heer (2018) to demon-
strate the utility of using VizNet. Our results with real-world 
data are largely consistent with their fndings. As a result of 
our more diverse backing datasets, however, there are statis-
tically signifcant diferences in error rates for the complex 
tasks. We also note that task completion times with real data 
are consistently longer for all but one task. These discrepan-
cies suggest that graphical perception studies must account 
for the variation found in real datasets. Kim and Heer (2018) 
acknowledge this direction of future work by describing the 
need for investigating “all [data] distributions of potential 
interest.” The process of harvesting these diverse distribu-
tions would be facilitated by using VizNet. We further extend 
the original experiment by considering an additional “detect 
outliers” task, an important but subjective visual analysis 
task that is difcult to assess using synthetic data. 
Implications of VizNet for learning a metric of per-

ceptual efectiveness. While Kim and Heer (2018) employed 
a mixed efects model to analyze their results, we proposed 
to conceive the harvested data as a collection of (data, vi-
sualization, task) triplets, each of which is associated with 
efectiveness measures. Using machine learning models, we 
predicted the completion time with an R2 value of 0.47. Ac-
knowledging the trade-of between completion time and 
error rate, we constructed a combined metric and achieved 
a top-3 prediction accuracy of 52.48%. Despite the noise and 
skew of crowdsourced labels, and a relatively small sam-
ple size, these results out-perform both random chance and 
baseline classifers. In doing so, they illustrate the poten-
tial for learning a metric of perceptual efectiveness from 
experimental results. 
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7 FUTURE WORK 

We plan to extend VizNet along three major directions: (1) 
incorporate and characterize more datasets, (2) harness the 
wisdom of the crowd, and (3) develop active learning algo-
rithms for optimal experiment design. 
Incorporate and characterize more datasets. VizNet 

currently centralizes four corpora of data from the web, open 
data portals, and online visualization galleries. We plan to 
expand the VizNet corpus with the 410,554 Microsoft Ex-
cel workbook fles (1,181,530 sheets) [8] extracted from the 
ClueWeb09 web crawl1. Furthermore, Morton et. al. [50] re-
port 73, 000 Tableau workbooks and 107, 500 datasets from 
Tableau Public, which could be integrated into VizNet. Lastly, 
we plan to incorporate 10, 663 datasets from Kaggle2, 1, 161 
datasets included alongside the R statistical environment3, 
and to leverage the Google Dataset Search4 to source more 
open datasets. 
In the future work, we plan to characterize the seman-

tic content within column and group names using natural 
language processing techniques such as language detection, 
named entity recognition, and word embeddings. Moreover, 
as we describe the features of datasets within the VizNet cor-
pus, we can characterize the bias between corpora in terms 
of dimensions, type composition, and statistical properties of 
columns. This will enable us to systematically study the ex-
tent to which these corpora difer. The existence of such bias 
between corpora is clear from the previous data section § 3. A 
clearer understanding of between-corpus bias could inform 
future techniques for sampling from the VizNet corpus. 
Harness the wisdom of the crowd. Domain specifc 

crowdsourcing platforms such as FoldIt, EteRNA, Galaxy-
Zoo, and Game with Purpose, have incentivized citizen sci-
entists to discover new forms of proteins [14], RNAs [36], 
galaxies [40], and artifcial intelligence algorithms [72]. We 
envision VizNet will enable citizen scientists and visual-
ization researchers to execute graphical perception experi-
ments at scale. In recent years, crowdsourcing has been piv-
otal in the creation of large-scale machine learning corpora. 
Daemo [21], a self-governed crowdsourcing marketplace, 
was instrumental in the creation of the Stanford Question 
Answering Dataset (SQuAD) [55], whereas MTurk was used 
to curate the ImageNet dataset[17]. 
The efectiveness of the crowdsourcing has also been ex-

emplifed in our experiment while collecting the human 
judgments for the critical evaluation of visual designs. It is 
interesting to note that some of the crowd workers enjoyed 
the intellectual aspect of the experiment, as illustrated by 

1http://lemurproject.org/clueweb09.php 
2https://www.kaggle.com/datasets 
3https://github.com/vincentarelbundock/Rdatasets 
4https://toolbox.google.com/datasetsearch 
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Figure 8: Performance curves obtained by semi-supervised 
active learning and supervised learning over 10 iterations. 

post experiment responses: (1) ‘I found this survey entertain-
ing, it makes you think and use your head’ (2) ‘It is a very 
interesting survey to carry out since it promotes the capacity of 
analysis I congratulate you for that’. A natural progression to 
harness crowdsourcing mechanisms for VizNet includes ex-
tension of literature on task design [31], crowd work quality 
improvements [19, 35], and incentive design [22, 72]. 
Develop active learning for optimal experiment de-

sign. Although gathering human-judgment labels for each 
triplet is costly, it is possible to learn the efectiveness from 
labeled triplets to predict labels for unseen ones (see sec-
tion § 5). In order to further illustrate this strategy we con-
ducted a small experiment on the same data as in section § 5 
where the completion times are categorized into low, medium 
and high. To propagate labels we employed self-learning [1], 
so we added the model predictions with high certainty to 
the labelled set. The predictions with low certainty were 
replaced with crowdsourced labels following the uncertainty 
algorithm [13]. Figure 8 shows how this strategy improves 
the accuracy on a test set after a number of iterations against 
the baseline of training on all labeled samples (supervised 
learning). In the future, we plan to harness active learning 
to assess the quality of human judgment. 

8 CONCLUSION 

Large-scale data collection eforts for facilitating research 
are common across sciences and engineering, from genomics 
to machine learning. Their success in accelerating the impact 
of research in respective felds is a testament to the impor-
tance of easy access to large-scale realistic data as well as 
benchmarking and performing research on shared databases. 
As the feld of data visualization research grows from its 
infancy, we expect the need for and utility of large-scale data 
and visualization repositories to signifcantly grow as well. 
VizNet is a step forward in addressing this need. 
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