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Figure 1: Varv Examples: (a) A todo list web application that is inherently extensible. Here, a basic todo list is extended with the 
ability to complete and delete todos by adding two new concept defnitions and new modifed template defnitions. (b) A board 
game toolkit that defnes abstractions for board game logic. The games “Checkers” and “Othello” were implemented with 
the toolkit and then merged into a new “Checkers-O-Thello” game with the addition of a short concept defnition. As Varv 
applications are represented as data structures, higher-level tooling can be developed including a block-based editor (right), 
an inspector to go from an element in the view to the corresponding template or data (context menu to the left), and a data 
inspector for live editing application state (middle). 

ABSTRACT 
Most modern applications are immutable and turn-key despite the 
acknowledged benefts of empowering users to modify their soft-
ware. Writing extensible software remains challenging, even for 
expert programmers. Reprogramming or extending existing soft-
ware is often laborious or wholly blocked, requiring sophisticated 
knowledge of application architecture or setting up a development 
environment. We present Varv, a programming model representing 
reprogrammable interactive software as a declarative data struc-
ture. Varv defnes interactive applications as a set of concepts that 
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consist of a schema and actions. Applications in Varv support incre-
mental modifcation, allowing users to reprogram through addition 
and selectively suppress, modify, or add behavior. Users can defne 
high-level concepts, creating an abstraction layer and efectively a 
domain-specifc language for their application domain, emphasizing 
reuse and modifcation. We demonstrate the reprogramming and 
collaboration capabilities of Varv in two case studies and illustrate 
how the event engine allows for extensive tooling support. 
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1 INTRODUCTION 
It has long been acknowledged that most programs are writ-
ten not by professional software developers but rather by end-
users [42] who, for instance, regularly build small computational 
tools such as creating their own interfaces in spreadsheets. However, 
most application software is constructed, packaged, and shared as 
hermetically-sealed turn-key products [34, 56]. As a result, end-
users — including professionally trained programmers — have little 
power to change the applications they use. In their foundational 
1977 piece on Personal Dynamic Media, Kay and Goldberg envi-
sioned software being malleable, so that users could easily redefne 
and reshape it to suit their idiosyncratic needs [37]. 

Today, software malleability primarily occurs through scripting 
(e.g., macOS Automator, iOS Shortcuts, or IFTTT) or add-on ex-
tensions (e.g., Firefox, Figma, or Visual Studio Code). While such 
facilities can yield “customization ecosystems” that increase the 
value of the application for all users [27], these approaches present 
a non-trivial burden for both software creators and end-user pro-
grammers. Writing extensible software is an explicit choice that 
software creators must make, and requires careful design and archi-
tectural decisions that are often untenable for small-scale software 
creators to consider as the customization ecosystem is not guaran-
teed to fourish. Moreover, the range of customizations these facili-
ties support is circumscribed by the design of their APIs, thereby 
presenting a catch-22: it may not be possible to customize particular 
aspects of an application if the creator did not foresee the possibil-
ity of doing so. Finally, the APIs themselves are idiosyncratic and 
application-specifc. As a result, it can be challenging to engage in 
customizations in a cross-cutting fashion — for instance, porting an 
extension from one context to another typically amounts to rewrit-
ing it from scratch, and extending or composing add-ons together 
is inconceivable without direct modifcation of their source code. 

In response, we present Varv,1 a declarative language for re-
programmable interactive software that decouples specifcation 
(the what) from execution (the how). With Varv, users can focus 
on specifying interactive applications as compositions of concepts, 
or individual units of dynamic functionality. Concepts comprise 
a schema, that specifes the shape and type of the concept’s state; 
actions, that describe valid transformations of the state; and, trig-
gers, or events that cause transitions between states. Inspired by 
Vega [66] and Vega-Lite [65], concepts are specifed as data struc-
tures expressed in JSON (JavaScript Object Notation). The Varv 
runtime is responsible for all execution concerns, including parsing 
declarative specifcations, assembling the corresponding datafow 
graph, and handling event creation and propagation. The runtime 
also handles bookkeeping associated with storing application state 

1The Swedish word varv carries the meanings “revolution” or “in layers.” In geology, 
a varv refers to the annual sedimentary layer in a glacial lake. In the same vein, 
application code can be layered in our Varv system. 

and rendering the resultant interface — Varv is designed to be ag-
nostic to the specifc ways these processes occur. As a result, Varv 
can target a variety of data backends or frontend modalities. 

Varv’s structured, declarative approach contrasts existing meth-
ods for constructing interactive software, which typically involves 
writing unstructured blobs of imperative code. It yields an accretive 
development process, with applications that are inherently exten-
sible. In particular, application developers need no longer write 
explicit extensibility APIs. Instead, to introduce a new piece of 
functionality, end-user programmers introduce a new JSON object 
at runtime. These JSON objects can extend or override existing 
concept defnitions in a straightforward fashion or use a series of 
composition operators to construct new concepts from existing parts. 
The Varv architecture consolidates new and existing specifcations 
and hot-swaps them to produce a live programming experience (i.e., 
users see changes they make to Varv program specifcations re-
fected immediately). In this way, Varv blurs the boundary between 
developing the “core” application and extending it, making it possi-
ble for users to tinker with interactive functionality incrementally. 

We evaluate the feasibility and expressivity of our approach 
through demonstration [44]. We frst instantiate Varv in Web-
strates [41], a web-based environment that provides persistence 
and real-time synchronization of application data (i.e., state). While 
Webstrates provides our data layer, Codestrates [13] provides a code 
editing layer on top of web pages that enables instantiating IDE-like 
tools inside a web app. With this Webstrates-based implementation, 
we develop two case studies to demonstrate that Varv can be used 
to author a rich design space of interactive applications. The case 
studies illustrate the experience of using Varv as a live program-
ming tool for user interfaces, akin to real-time manipulation of 
HTML and CSS using the browser’s built-in developer tools, but 
now for interactive behavior as well. We show how users can author 
Varv applications incrementally — one feature at a time, where each 
feature is implemented as an extension to the application rather 
than a modifcation of existing source code — and how concepts 
can be used to prototype domain-specifc languages for develop-
ing and composing classes of applications. This implementation 
required no modifcations to Webstrates itself. The case studies 
also demonstrate the synergies between the two paradigms: using 
Varv with Webstrates yields a live and collaborative reprogram-
ming experience. However, to illustrate that Varv is agnostic to data 
storage, we develop two additional prototype implementations, one 
packaged in Electron [60], an environment that enables local devel-
opment of Varv applications, and one deployed on Observable [57], 
a web-based notebook environment for JavaScript. 

We, moreover, demonstrate the implications of our approach 
through a series of prototype sketches of higher-level tooling to 
support Varv application development. Although Varv applications 
are specifed as JSON-based data structures, we show how this rep-
resentation facilitates a range of authoring experiences, including 
visual block-based editing and alternative specifcation formats 
such as YAML. Similarly, we show how Varv’s declarative repre-
sentation enables visual inspectors for debugging. With Varv, we 
set a foundation for malleable software to enable users — who are, 
for now, profcient in programming — to modify their software and 
envision how it is structured. Further, declarative representations 
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can facilitate future research on more usable, higher-level systems 
for reprogrammable interactive software. 

2 THE VARV LANGUAGE 

2.1 Design Goals 
Varv’s design is motivated by the following three design goals: 

Provide a Structured Declarative Representation. Declarative rep-
resentations have become widely adopted in various domains be-
cause they allow users to focus primarily on composing domain-
specifc primitives at a higher level of abstraction while deferring 
execution concerns to the underlying architecture or runtime [28]. 
Varv uses declarative language constructs to defne application 
state and state transitions and provides an execution engine that 
parses declarative Varv specifcations to produce an interactive 
application. Moreover, inspired by declarative representations of 
interactive visualizations like Vega [66] and Vega-Lite [65], Varv 
embeds its declarative representation of interactive software as 
a data structure expressed as JSON. In doing so, Varv lowers the 
threshold for programmatically reasoning about the semantics of 
interactive software. As a result, it becomes more feasible for the 
Varv architecture to hot-swap declarative specifcations to enable 
live programming and an ecosystem of higher-level development 
tools to fourish (akin to the one found around Vega and Vega-
Lite [70, 72, 73]). 

Accretive Extensibility. Developers currently rely on extensibility 
APIs written by software creators to extend interactive software. 
However, such an approach presents a catch-22: it can be difcult, 
if not impossible, to customize an application in a particular way 
if the creator did not design a corresponding API. In contrast, to 
reduce a creator’s burden of explicitly designing for extensibility, 
Varv defnes interactive applications in terms of individual units 
called concepts. To extend a Varv application, a developer need only 
add a new specifcation to the runtime with entries to augment 
or override properties of existing concepts or introduce new con-
cepts from a combination of existing parts. Thus, the extensions 
are themselves units that layer on top of the base defnition of 
an application. This incremental approach facilitates experimen-
tation: a developer can safely try implementing new features, or 
an end-user can selectively enable or disable extensions without 
fear of breaking or changing the original program. Moreover, this 
process of extension-by-addition simplifes resolving conficting ex-
tensions by adding another specifcation to resolve the conficting 
properties. Hence, our aim is the open authorial principle [7] that 
states that program modifcation should be possible purely through 
composition without rewriting existing code. 

Decouple Application Logic from Interaction Modality. Existing 
methods for specifying interactive behaviors — namely, event call-
backs — tightly couple an input event (e.g., mouse clicks, keypresses, 
swipe gestures) with the resultant action it triggers (e.g., selecting a 
piece on a board game, moving it from one square to another). As a 
result, retargeting an interactive application from one modality to 
another (e.g., desktop to mobile) or supporting custom interactive 
triggers (e.g., keyboard shortcuts) requires signifcant manual de-
velopment efort. Varv decouples these two pieces: an application 

can be defned in an abstract, purely self-contained manner with 
custom, semantically-meaningful event names taking the place of 
low-level input events (e.g., pieceSelected instead of click). A 
subsequent specifcation then makes this abstract defnition more 
concrete by binding semantic events to a specifc interaction modal-
ity (e.g., pieceSelected is triggered by a tap). 

2.2 Language Primitives 
Concepts (see Figure 2 
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can facilitate future research on more usable, higher-level systems
for reprogrammable interactive software.

2 THE VARV LANGUAGE
2.1 Design Goals
Varv’s design is motivated by the following three design goals:

Provide a Structured Declarative Representation. Declarative rep-
resentations have become widely adopted in various domains be-
cause they allow users to focus primarily on composing domain-
specific primitives at a higher level of abstraction while deferring
execution concerns to the underlying architecture or runtime [28].
Varv uses declarative language constructs to define application
state and state transitions and provides an execution engine that
parses declarative Varv specifications to produce an interactive
application. Moreover, inspired by declarative representations of
interactive visualizations like Vega [66] and Vega-Lite [65], Varv
embeds its declarative representation of interactive software as
a data structure expressed as JSON. In doing so, Varv lowers the
threshold for programmatically reasoning about the semantics of
interactive software. As a result, it becomes more feasible for the
Varv architecture to hot-swap declarative specifications to enable
live programming and an ecosystem of higher-level development
tools to flourish (akin to the one found around Vega and Vega-
Lite [70, 72, 73]).

Accretive Extensibility. Developers currently rely on extensibility
APIs written by software creators to extend interactive software.
However, such an approach presents a catch-22: it can be difficult,
if not impossible, to customize an application in a particular way
if the creator did not design a corresponding API. In contrast, to
reduce a creator’s burden of explicitly designing for extensibility,
Varv defines interactive applications in terms of individual units
called concepts. To extend a Varv application, a developer need only
add a new specification to the runtime with entries to augment
or override properties of existing concepts or introduce new con-
cepts from a combination of existing parts. Thus, the extensions
are themselves units that layer on top of the base definition of
an application. This incremental approach facilitates experimen-
tation: a developer can safely try implementing new features, or
an end-user can selectively enable or disable extensions without
fear of breaking or changing the original program. Moreover, this
process of extension-by-addition simplifies resolving conflicting ex-
tensions by adding another specification to resolve the conflicting
properties. Hence, our aim is the open authorial principle [7] that
states that program modification should be possible purely through
composition without rewriting existing code.

Decouple Application Logic from Interaction Modality. Existing
methods for specifying interactive behaviors— namely, event call-
backs— tightly couple an input event (e.g., mouse clicks, keypresses,
swipe gestures) with the resultant action it triggers (e.g., selecting a
piece on a board game, moving it from one square to another). As a
result, retargeting an interactive application from one modality to
another (e.g., desktop to mobile) or supporting custom interactive
triggers (e.g., keyboard shortcuts) requires significant manual de-
velopment effort. Varv decouples these two pieces: an application

can be defined in an abstract, purely self-contained manner with
custom, semantically-meaningful event names taking the place of
low-level input events (e.g., pieceSelected instead of click). A
subsequent specification then makes this abstract definition more
concrete by binding semantic events to a specific interaction modal-
ity (e.g., pieceSelected is triggered by a tap).

2.2 Language Primitives
Concepts (see Figure 2 C ) are Varv’s core building block. They
define individual named units of interactive behavior— for example,
an “item” in a todo list that can be assigned or marked as completed,
or a “piece” that can be moved along the squares of a board game or
jump over other pieces. Each concept comprises a schema S , which
determines the concept’s state (i.e., data), and actions A , which
enumerate the ways this state can change through interaction.
Concepts can be augmented or extended in two ways: additional
specifications can be introduced (e.g., Figure 2b) which reference
an existing concept by name, and extend or override its properties;
or, a variety of extension E operators can be used to define new
concepts from existing parts.

Varv’s concepts combine ideas from several different program-
ming paradigms. At first glance, concepts seemingly map to classes
in object-oriented programming (OOP), offering a mechanism for
modularity, reuse, mixins, and traits. However, Varv’s concepts
make a fundamental departure: concepts are not encapsulated units
(i.e., a concept’s state and actions can be referenced from another).
This design choice emulates the Store design pattern adopted by
many popular JavaScript frontend libraries (e.g., Redux, Vue, and
Svelte). Stores centralize application states, decoupling them from
state transitions to aid rapid prototyping and developing cross-
cutting components. Varv’s unencapsulated concepts retain this
affordance without sacrificing the modularity of OOP classes. We
elaborate on these and other differences between Varv and existing
programming paradigms in subsection 7.3.

2.2.1 Schema. The schema defines the shape and type of data as-
sociated with a concept. The syntax for the schema definition uses
a modified version of JSON Schema [62] and supports a subset of
the JSON Schema functionality. Varv extends JSON Schema with
shorthands, making the language more concise and easier to read
and write. For example, {"label":{"type":"string"}} can be
written as the shorthand {"label":"string"}. Varv concepts can
be referenced directly by name within the schema to specify nested
state. For example, Figure 2 defines the schema of a "todoList"
concept as an array of "todo" concept instances. Varv also supports
deriving properties from existing state by specifying a "derive"
object which expects an array of "properties" that are processed
through an array of "transform" actions. Varv merges the prop-
erties and actions to generate a function that produces the derived
value. For instance, in Figure 2, the "totalCount" property of the
"todoList" concept is calculated as the "length" (a built-in ac-
tion) of the "todos" property.

Early prototypes of Varv did not provide an explicit definition
of concept state. Instead, the state was implicitly created and ma-
nipulated through sequences of actions. However, as we built in-
creasingly complex applications, we discovered that this implicit
treatment reduced visibility [12] into concept state (i.e., it was not

) are Varv’s core building block. They 
defne individual named units of interactive behavior — for example, 
an “item” in a todo list that can be assigned or marked as completed, 
or a “piece” that can be moved along the squares of a board game or 
jump over other pieces. Each concept comprises a schema 
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for reprogrammable interactive software.

2 THE VARV LANGUAGE
2.1 Design Goals
Varv’s design is motivated by the following three design goals:

Provide a Structured Declarative Representation. Declarative rep-
resentations have become widely adopted in various domains be-
cause they allow users to focus primarily on composing domain-
specific primitives at a higher level of abstraction while deferring
execution concerns to the underlying architecture or runtime [28].
Varv uses declarative language constructs to define application
state and state transitions and provides an execution engine that
parses declarative Varv specifications to produce an interactive
application. Moreover, inspired by declarative representations of
interactive visualizations like Vega [66] and Vega-Lite [65], Varv
embeds its declarative representation of interactive software as
a data structure expressed as JSON. In doing so, Varv lowers the
threshold for programmatically reasoning about the semantics of
interactive software. As a result, it becomes more feasible for the
Varv architecture to hot-swap declarative specifications to enable
live programming and an ecosystem of higher-level development
tools to flourish (akin to the one found around Vega and Vega-
Lite [70, 72, 73]).

Accretive Extensibility. Developers currently rely on extensibility
APIs written by software creators to extend interactive software.
However, such an approach presents a catch-22: it can be difficult,
if not impossible, to customize an application in a particular way
if the creator did not design a corresponding API. In contrast, to
reduce a creator’s burden of explicitly designing for extensibility,
Varv defines interactive applications in terms of individual units
called concepts. To extend a Varv application, a developer need only
add a new specification to the runtime with entries to augment
or override properties of existing concepts or introduce new con-
cepts from a combination of existing parts. Thus, the extensions
are themselves units that layer on top of the base definition of
an application. This incremental approach facilitates experimen-
tation: a developer can safely try implementing new features, or
an end-user can selectively enable or disable extensions without
fear of breaking or changing the original program. Moreover, this
process of extension-by-addition simplifies resolving conflicting ex-
tensions by adding another specification to resolve the conflicting
properties. Hence, our aim is the open authorial principle [7] that
states that program modification should be possible purely through
composition without rewriting existing code.

Decouple Application Logic from Interaction Modality. Existing
methods for specifying interactive behaviors— namely, event call-
backs— tightly couple an input event (e.g., mouse clicks, keypresses,
swipe gestures) with the resultant action it triggers (e.g., selecting a
piece on a board game, moving it from one square to another). As a
result, retargeting an interactive application from one modality to
another (e.g., desktop to mobile) or supporting custom interactive
triggers (e.g., keyboard shortcuts) requires significant manual de-
velopment effort. Varv decouples these two pieces: an application

can be defined in an abstract, purely self-contained manner with
custom, semantically-meaningful event names taking the place of
low-level input events (e.g., pieceSelected instead of click). A
subsequent specification then makes this abstract definition more
concrete by binding semantic events to a specific interaction modal-
ity (e.g., pieceSelected is triggered by a tap).

2.2 Language Primitives
Concepts (see Figure 2 C ) are Varv’s core building block. They
define individual named units of interactive behavior— for example,
an “item” in a todo list that can be assigned or marked as completed,
or a “piece” that can be moved along the squares of a board game or
jump over other pieces. Each concept comprises a schema S , which
determines the concept’s state (i.e., data), and actions A , which
enumerate the ways this state can change through interaction.
Concepts can be augmented or extended in two ways: additional
specifications can be introduced (e.g., Figure 2b) which reference
an existing concept by name, and extend or override its properties;
or, a variety of extension E operators can be used to define new
concepts from existing parts.

Varv’s concepts combine ideas from several different program-
ming paradigms. At first glance, concepts seemingly map to classes
in object-oriented programming (OOP), offering a mechanism for
modularity, reuse, mixins, and traits. However, Varv’s concepts
make a fundamental departure: concepts are not encapsulated units
(i.e., a concept’s state and actions can be referenced from another).
This design choice emulates the Store design pattern adopted by
many popular JavaScript frontend libraries (e.g., Redux, Vue, and
Svelte). Stores centralize application states, decoupling them from
state transitions to aid rapid prototyping and developing cross-
cutting components. Varv’s unencapsulated concepts retain this
affordance without sacrificing the modularity of OOP classes. We
elaborate on these and other differences between Varv and existing
programming paradigms in subsection 7.3.

2.2.1 Schema. The schema defines the shape and type of data as-
sociated with a concept. The syntax for the schema definition uses
a modified version of JSON Schema [62] and supports a subset of
the JSON Schema functionality. Varv extends JSON Schema with
shorthands, making the language more concise and easier to read
and write. For example, {"label":{"type":"string"}} can be
written as the shorthand {"label":"string"}. Varv concepts can
be referenced directly by name within the schema to specify nested
state. For example, Figure 2 defines the schema of a "todoList"
concept as an array of "todo" concept instances. Varv also supports
deriving properties from existing state by specifying a "derive"
object which expects an array of "properties" that are processed
through an array of "transform" actions. Varv merges the prop-
erties and actions to generate a function that produces the derived
value. For instance, in Figure 2, the "totalCount" property of the
"todoList" concept is calculated as the "length" (a built-in ac-
tion) of the "todos" property.

Early prototypes of Varv did not provide an explicit definition
of concept state. Instead, the state was implicitly created and ma-
nipulated through sequences of actions. However, as we built in-
creasingly complex applications, we discovered that this implicit
treatment reduced visibility [12] into concept state (i.e., it was not

, which 
determines the concept’s state (i.e., data), and actions 
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resentations have become widely adopted in various domains be-
cause they allow users to focus primarily on composing domain-
specific primitives at a higher level of abstraction while deferring
execution concerns to the underlying architecture or runtime [28].
Varv uses declarative language constructs to define application
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parses declarative Varv specifications to produce an interactive
application. Moreover, inspired by declarative representations of
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a data structure expressed as JSON. In doing so, Varv lowers the
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APIs written by software creators to extend interactive software.
However, such an approach presents a catch-22: it can be difficult,
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are themselves units that layer on top of the base definition of
an application. This incremental approach facilitates experimen-
tation: a developer can safely try implementing new features, or
an end-user can selectively enable or disable extensions without
fear of breaking or changing the original program. Moreover, this
process of extension-by-addition simplifies resolving conflicting ex-
tensions by adding another specification to resolve the conflicting
properties. Hence, our aim is the open authorial principle [7] that
states that program modification should be possible purely through
composition without rewriting existing code.

Decouple Application Logic from Interaction Modality. Existing
methods for specifying interactive behaviors— namely, event call-
backs— tightly couple an input event (e.g., mouse clicks, keypresses,
swipe gestures) with the resultant action it triggers (e.g., selecting a
piece on a board game, moving it from one square to another). As a
result, retargeting an interactive application from one modality to
another (e.g., desktop to mobile) or supporting custom interactive
triggers (e.g., keyboard shortcuts) requires significant manual de-
velopment effort. Varv decouples these two pieces: an application
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low-level input events (e.g., pieceSelected instead of click). A
subsequent specification then makes this abstract definition more
concrete by binding semantic events to a specific interaction modal-
ity (e.g., pieceSelected is triggered by a tap).

2.2 Language Primitives
Concepts (see Figure 2 C ) are Varv’s core building block. They
define individual named units of interactive behavior— for example,
an “item” in a todo list that can be assigned or marked as completed,
or a “piece” that can be moved along the squares of a board game or
jump over other pieces. Each concept comprises a schema S , which
determines the concept’s state (i.e., data), and actions A , which
enumerate the ways this state can change through interaction.
Concepts can be augmented or extended in two ways: additional
specifications can be introduced (e.g., Figure 2b) which reference
an existing concept by name, and extend or override its properties;
or, a variety of extension E operators can be used to define new
concepts from existing parts.

Varv’s concepts combine ideas from several different program-
ming paradigms. At first glance, concepts seemingly map to classes
in object-oriented programming (OOP), offering a mechanism for
modularity, reuse, mixins, and traits. However, Varv’s concepts
make a fundamental departure: concepts are not encapsulated units
(i.e., a concept’s state and actions can be referenced from another).
This design choice emulates the Store design pattern adopted by
many popular JavaScript frontend libraries (e.g., Redux, Vue, and
Svelte). Stores centralize application states, decoupling them from
state transitions to aid rapid prototyping and developing cross-
cutting components. Varv’s unencapsulated concepts retain this
affordance without sacrificing the modularity of OOP classes. We
elaborate on these and other differences between Varv and existing
programming paradigms in subsection 7.3.

2.2.1 Schema. The schema defines the shape and type of data as-
sociated with a concept. The syntax for the schema definition uses
a modified version of JSON Schema [62] and supports a subset of
the JSON Schema functionality. Varv extends JSON Schema with
shorthands, making the language more concise and easier to read
and write. For example, {"label":{"type":"string"}} can be
written as the shorthand {"label":"string"}. Varv concepts can
be referenced directly by name within the schema to specify nested
state. For example, Figure 2 defines the schema of a "todoList"
concept as an array of "todo" concept instances. Varv also supports
deriving properties from existing state by specifying a "derive"
object which expects an array of "properties" that are processed
through an array of "transform" actions. Varv merges the prop-
erties and actions to generate a function that produces the derived
value. For instance, in Figure 2, the "totalCount" property of the
"todoList" concept is calculated as the "length" (a built-in ac-
tion) of the "todos" property.

Early prototypes of Varv did not provide an explicit definition
of concept state. Instead, the state was implicitly created and ma-
nipulated through sequences of actions. However, as we built in-
creasingly complex applications, we discovered that this implicit
treatment reduced visibility [12] into concept state (i.e., it was not

, which 
enumerate the ways this state can change through interaction. 
Concepts can be augmented or extended in two ways: additional 
specifcations can be introduced (e.g., Figure 2b) which reference 
an existing concept by name, and extend or override its properties; 
or, a variety of extension 
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can facilitate future research on more usable, higher-level systems
for reprogrammable interactive software.

2 THE VARV LANGUAGE
2.1 Design Goals
Varv’s design is motivated by the following three design goals:

Provide a Structured Declarative Representation. Declarative rep-
resentations have become widely adopted in various domains be-
cause they allow users to focus primarily on composing domain-
specific primitives at a higher level of abstraction while deferring
execution concerns to the underlying architecture or runtime [28].
Varv uses declarative language constructs to define application
state and state transitions and provides an execution engine that
parses declarative Varv specifications to produce an interactive
application. Moreover, inspired by declarative representations of
interactive visualizations like Vega [66] and Vega-Lite [65], Varv
embeds its declarative representation of interactive software as
a data structure expressed as JSON. In doing so, Varv lowers the
threshold for programmatically reasoning about the semantics of
interactive software. As a result, it becomes more feasible for the
Varv architecture to hot-swap declarative specifications to enable
live programming and an ecosystem of higher-level development
tools to flourish (akin to the one found around Vega and Vega-
Lite [70, 72, 73]).

Accretive Extensibility. Developers currently rely on extensibility
APIs written by software creators to extend interactive software.
However, such an approach presents a catch-22: it can be difficult,
if not impossible, to customize an application in a particular way
if the creator did not design a corresponding API. In contrast, to
reduce a creator’s burden of explicitly designing for extensibility,
Varv defines interactive applications in terms of individual units
called concepts. To extend a Varv application, a developer need only
add a new specification to the runtime with entries to augment
or override properties of existing concepts or introduce new con-
cepts from a combination of existing parts. Thus, the extensions
are themselves units that layer on top of the base definition of
an application. This incremental approach facilitates experimen-
tation: a developer can safely try implementing new features, or
an end-user can selectively enable or disable extensions without
fear of breaking or changing the original program. Moreover, this
process of extension-by-addition simplifies resolving conflicting ex-
tensions by adding another specification to resolve the conflicting
properties. Hence, our aim is the open authorial principle [7] that
states that program modification should be possible purely through
composition without rewriting existing code.

Decouple Application Logic from Interaction Modality. Existing
methods for specifying interactive behaviors— namely, event call-
backs— tightly couple an input event (e.g., mouse clicks, keypresses,
swipe gestures) with the resultant action it triggers (e.g., selecting a
piece on a board game, moving it from one square to another). As a
result, retargeting an interactive application from one modality to
another (e.g., desktop to mobile) or supporting custom interactive
triggers (e.g., keyboard shortcuts) requires significant manual de-
velopment effort. Varv decouples these two pieces: an application

can be defined in an abstract, purely self-contained manner with
custom, semantically-meaningful event names taking the place of
low-level input events (e.g., pieceSelected instead of click). A
subsequent specification then makes this abstract definition more
concrete by binding semantic events to a specific interaction modal-
ity (e.g., pieceSelected is triggered by a tap).

2.2 Language Primitives
Concepts (see Figure 2 C ) are Varv’s core building block. They
define individual named units of interactive behavior— for example,
an “item” in a todo list that can be assigned or marked as completed,
or a “piece” that can be moved along the squares of a board game or
jump over other pieces. Each concept comprises a schema S , which
determines the concept’s state (i.e., data), and actions A , which
enumerate the ways this state can change through interaction.
Concepts can be augmented or extended in two ways: additional
specifications can be introduced (e.g., Figure 2b) which reference
an existing concept by name, and extend or override its properties;
or, a variety of extension E operators can be used to define new
concepts from existing parts.

Varv’s concepts combine ideas from several different program-
ming paradigms. At first glance, concepts seemingly map to classes
in object-oriented programming (OOP), offering a mechanism for
modularity, reuse, mixins, and traits. However, Varv’s concepts
make a fundamental departure: concepts are not encapsulated units
(i.e., a concept’s state and actions can be referenced from another).
This design choice emulates the Store design pattern adopted by
many popular JavaScript frontend libraries (e.g., Redux, Vue, and
Svelte). Stores centralize application states, decoupling them from
state transitions to aid rapid prototyping and developing cross-
cutting components. Varv’s unencapsulated concepts retain this
affordance without sacrificing the modularity of OOP classes. We
elaborate on these and other differences between Varv and existing
programming paradigms in subsection 7.3.

2.2.1 Schema. The schema defines the shape and type of data as-
sociated with a concept. The syntax for the schema definition uses
a modified version of JSON Schema [62] and supports a subset of
the JSON Schema functionality. Varv extends JSON Schema with
shorthands, making the language more concise and easier to read
and write. For example, {"label":{"type":"string"}} can be
written as the shorthand {"label":"string"}. Varv concepts can
be referenced directly by name within the schema to specify nested
state. For example, Figure 2 defines the schema of a "todoList"
concept as an array of "todo" concept instances. Varv also supports
deriving properties from existing state by specifying a "derive"
object which expects an array of "properties" that are processed
through an array of "transform" actions. Varv merges the prop-
erties and actions to generate a function that produces the derived
value. For instance, in Figure 2, the "totalCount" property of the
"todoList" concept is calculated as the "length" (a built-in ac-
tion) of the "todos" property.

Early prototypes of Varv did not provide an explicit definition
of concept state. Instead, the state was implicitly created and ma-
nipulated through sequences of actions. However, as we built in-
creasingly complex applications, we discovered that this implicit
treatment reduced visibility [12] into concept state (i.e., it was not
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in object-oriented programming (OOP), ofering a mechanism for 
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programming paradigms in subsection 7.3. 
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a modifed version of JSON Schema [62] and supports a subset of 
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and write. For example, {"label":{"type":"string"}} can be 
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state. For example, Figure 2 defnes the schema of a "todoList" 
concept as an array of "todo" concept instances. Varv also supports 
deriving properties from existing state by specifying a "derive" 
object which expects an array of "properties" that are processed 
through an array of "transform" actions. Varv merges the prop-
erties and actions to generate a function that produces the derived 
value. For instance, in Figure 2, the "totalCount" property of the 
"todoList" concept is calculated as the "length" (a built-in ac-
tion) of the "todos" property. 

Early prototypes of Varv did not provide an explicit defnition 
of concept state. Instead, the state was implicitly created and ma-
nipulated through sequences of actions. However, as we built in-
creasingly complex applications, we discovered that this implicit 
treatment reduced visibility [12] into concept state (i.e., it was not 
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W when: [{ action: "toggleCompleted" }}],
T then: [...]

T then: [...]

S schema: {
S todos: { array: "todo" },
S completedCount: "number",
S totalCount: { "number": {
S derive: {
S properties: [ "todos" ],
S transform: [{ length: "todos" }]
S }
S }}
S },

S schema: { text: "string", completed: "boolean" },

S schema: { assignedTo: "string" }

C concepts: {
C todoList: {

C },
C todo: {

C },
C assignable: {

C }
C }
E extensions: [
E { join: [ "todo", "assignable" ],
E as: "assignableTodo"
E }
E ]

A actions: {
A updateCompletedCount: {

A }
A }

A actions: {
A toggleCompleted: {

A }
A }

(a) A concept defnition that is abstract as it does not reference spe-
cifc interaction modalities. 

A actions: {
A toggleCompleted: {

A }
A }

W when: [{ click: { view: todoCheckbox }}]

C concepts: {
C todo: {

C }
C }

(b) Extending the abstract specifcation with concrete references 
to modality-specifc input events (the toggleCompleted seman-
tic event, defned in the abstract concept, is triggered when the 
todoCheckbox widget is clicked). 

Figure 2: The components of a Varv concept defnition for 
a simple todo list. As a convention, and to demonstrate the 
merging of concept defnitions, we split the defnition into 
an abstract and a concrete part. The abstract part provides 
defnitions for a todoList, a todo, and an assignable con-
cept 
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can facilitate future research on more usable, higher-level systems
for reprogrammable interactive software.

2 THE VARV LANGUAGE
2.1 Design Goals
Varv’s design is motivated by the following three design goals:

Provide a Structured Declarative Representation. Declarative rep-
resentations have become widely adopted in various domains be-
cause they allow users to focus primarily on composing domain-
specific primitives at a higher level of abstraction while deferring
execution concerns to the underlying architecture or runtime [28].
Varv uses declarative language constructs to define application
state and state transitions and provides an execution engine that
parses declarative Varv specifications to produce an interactive
application. Moreover, inspired by declarative representations of
interactive visualizations like Vega [66] and Vega-Lite [65], Varv
embeds its declarative representation of interactive software as
a data structure expressed as JSON. In doing so, Varv lowers the
threshold for programmatically reasoning about the semantics of
interactive software. As a result, it becomes more feasible for the
Varv architecture to hot-swap declarative specifications to enable
live programming and an ecosystem of higher-level development
tools to flourish (akin to the one found around Vega and Vega-
Lite [70, 72, 73]).

Accretive Extensibility. Developers currently rely on extensibility
APIs written by software creators to extend interactive software.
However, such an approach presents a catch-22: it can be difficult,
if not impossible, to customize an application in a particular way
if the creator did not design a corresponding API. In contrast, to
reduce a creator’s burden of explicitly designing for extensibility,
Varv defines interactive applications in terms of individual units
called concepts. To extend a Varv application, a developer need only
add a new specification to the runtime with entries to augment
or override properties of existing concepts or introduce new con-
cepts from a combination of existing parts. Thus, the extensions
are themselves units that layer on top of the base definition of
an application. This incremental approach facilitates experimen-
tation: a developer can safely try implementing new features, or
an end-user can selectively enable or disable extensions without
fear of breaking or changing the original program. Moreover, this
process of extension-by-addition simplifies resolving conflicting ex-
tensions by adding another specification to resolve the conflicting
properties. Hence, our aim is the open authorial principle [7] that
states that program modification should be possible purely through
composition without rewriting existing code.

Decouple Application Logic from Interaction Modality. Existing
methods for specifying interactive behaviors— namely, event call-
backs— tightly couple an input event (e.g., mouse clicks, keypresses,
swipe gestures) with the resultant action it triggers (e.g., selecting a
piece on a board game, moving it from one square to another). As a
result, retargeting an interactive application from one modality to
another (e.g., desktop to mobile) or supporting custom interactive
triggers (e.g., keyboard shortcuts) requires significant manual de-
velopment effort. Varv decouples these two pieces: an application

can be defined in an abstract, purely self-contained manner with
custom, semantically-meaningful event names taking the place of
low-level input events (e.g., pieceSelected instead of click). A
subsequent specification then makes this abstract definition more
concrete by binding semantic events to a specific interaction modal-
ity (e.g., pieceSelected is triggered by a tap).

2.2 Language Primitives
Concepts (see Figure 2 C ) are Varv’s core building block. They
define individual named units of interactive behavior— for example,
an “item” in a todo list that can be assigned or marked as completed,
or a “piece” that can be moved along the squares of a board game or
jump over other pieces. Each concept comprises a schema S , which
determines the concept’s state (i.e., data), and actions A , which
enumerate the ways this state can change through interaction.
Concepts can be augmented or extended in two ways: additional
specifications can be introduced (e.g., Figure 2b) which reference
an existing concept by name, and extend or override its properties;
or, a variety of extension E operators can be used to define new
concepts from existing parts.

Varv’s concepts combine ideas from several different program-
ming paradigms. At first glance, concepts seemingly map to classes
in object-oriented programming (OOP), offering a mechanism for
modularity, reuse, mixins, and traits. However, Varv’s concepts
make a fundamental departure: concepts are not encapsulated units
(i.e., a concept’s state and actions can be referenced from another).
This design choice emulates the Store design pattern adopted by
many popular JavaScript frontend libraries (e.g., Redux, Vue, and
Svelte). Stores centralize application states, decoupling them from
state transitions to aid rapid prototyping and developing cross-
cutting components. Varv’s unencapsulated concepts retain this
affordance without sacrificing the modularity of OOP classes. We
elaborate on these and other differences between Varv and existing
programming paradigms in subsection 7.3.

2.2.1 Schema. The schema defines the shape and type of data as-
sociated with a concept. The syntax for the schema definition uses
a modified version of JSON Schema [62] and supports a subset of
the JSON Schema functionality. Varv extends JSON Schema with
shorthands, making the language more concise and easier to read
and write. For example, {"label":{"type":"string"}} can be
written as the shorthand {"label":"string"}. Varv concepts can
be referenced directly by name within the schema to specify nested
state. For example, Figure 2 defines the schema of a "todoList"
concept as an array of "todo" concept instances. Varv also supports
deriving properties from existing state by specifying a "derive"
object which expects an array of "properties" that are processed
through an array of "transform" actions. Varv merges the prop-
erties and actions to generate a function that produces the derived
value. For instance, in Figure 2, the "totalCount" property of the
"todoList" concept is calculated as the "length" (a built-in ac-
tion) of the "todos" property.

Early prototypes of Varv did not provide an explicit definition
of concept state. Instead, the state was implicitly created and ma-
nipulated through sequences of actions. However, as we built in-
creasingly complex applications, we discovered that this implicit
treatment reduced visibility [12] into concept state (i.e., it was not

. Each concept has a schema 
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can facilitate future research on more usable, higher-level systems
for reprogrammable interactive software.

2 THE VARV LANGUAGE
2.1 Design Goals
Varv’s design is motivated by the following three design goals:

Provide a Structured Declarative Representation. Declarative rep-
resentations have become widely adopted in various domains be-
cause they allow users to focus primarily on composing domain-
specific primitives at a higher level of abstraction while deferring
execution concerns to the underlying architecture or runtime [28].
Varv uses declarative language constructs to define application
state and state transitions and provides an execution engine that
parses declarative Varv specifications to produce an interactive
application. Moreover, inspired by declarative representations of
interactive visualizations like Vega [66] and Vega-Lite [65], Varv
embeds its declarative representation of interactive software as
a data structure expressed as JSON. In doing so, Varv lowers the
threshold for programmatically reasoning about the semantics of
interactive software. As a result, it becomes more feasible for the
Varv architecture to hot-swap declarative specifications to enable
live programming and an ecosystem of higher-level development
tools to flourish (akin to the one found around Vega and Vega-
Lite [70, 72, 73]).

Accretive Extensibility. Developers currently rely on extensibility
APIs written by software creators to extend interactive software.
However, such an approach presents a catch-22: it can be difficult,
if not impossible, to customize an application in a particular way
if the creator did not design a corresponding API. In contrast, to
reduce a creator’s burden of explicitly designing for extensibility,
Varv defines interactive applications in terms of individual units
called concepts. To extend a Varv application, a developer need only
add a new specification to the runtime with entries to augment
or override properties of existing concepts or introduce new con-
cepts from a combination of existing parts. Thus, the extensions
are themselves units that layer on top of the base definition of
an application. This incremental approach facilitates experimen-
tation: a developer can safely try implementing new features, or
an end-user can selectively enable or disable extensions without
fear of breaking or changing the original program. Moreover, this
process of extension-by-addition simplifies resolving conflicting ex-
tensions by adding another specification to resolve the conflicting
properties. Hence, our aim is the open authorial principle [7] that
states that program modification should be possible purely through
composition without rewriting existing code.

Decouple Application Logic from Interaction Modality. Existing
methods for specifying interactive behaviors— namely, event call-
backs— tightly couple an input event (e.g., mouse clicks, keypresses,
swipe gestures) with the resultant action it triggers (e.g., selecting a
piece on a board game, moving it from one square to another). As a
result, retargeting an interactive application from one modality to
another (e.g., desktop to mobile) or supporting custom interactive
triggers (e.g., keyboard shortcuts) requires significant manual de-
velopment effort. Varv decouples these two pieces: an application

can be defined in an abstract, purely self-contained manner with
custom, semantically-meaningful event names taking the place of
low-level input events (e.g., pieceSelected instead of click). A
subsequent specification then makes this abstract definition more
concrete by binding semantic events to a specific interaction modal-
ity (e.g., pieceSelected is triggered by a tap).

2.2 Language Primitives
Concepts (see Figure 2 C ) are Varv’s core building block. They
define individual named units of interactive behavior— for example,
an “item” in a todo list that can be assigned or marked as completed,
or a “piece” that can be moved along the squares of a board game or
jump over other pieces. Each concept comprises a schema S , which
determines the concept’s state (i.e., data), and actions A , which
enumerate the ways this state can change through interaction.
Concepts can be augmented or extended in two ways: additional
specifications can be introduced (e.g., Figure 2b) which reference
an existing concept by name, and extend or override its properties;
or, a variety of extension E operators can be used to define new
concepts from existing parts.

Varv’s concepts combine ideas from several different program-
ming paradigms. At first glance, concepts seemingly map to classes
in object-oriented programming (OOP), offering a mechanism for
modularity, reuse, mixins, and traits. However, Varv’s concepts
make a fundamental departure: concepts are not encapsulated units
(i.e., a concept’s state and actions can be referenced from another).
This design choice emulates the Store design pattern adopted by
many popular JavaScript frontend libraries (e.g., Redux, Vue, and
Svelte). Stores centralize application states, decoupling them from
state transitions to aid rapid prototyping and developing cross-
cutting components. Varv’s unencapsulated concepts retain this
affordance without sacrificing the modularity of OOP classes. We
elaborate on these and other differences between Varv and existing
programming paradigms in subsection 7.3.

2.2.1 Schema. The schema defines the shape and type of data as-
sociated with a concept. The syntax for the schema definition uses
a modified version of JSON Schema [62] and supports a subset of
the JSON Schema functionality. Varv extends JSON Schema with
shorthands, making the language more concise and easier to read
and write. For example, {"label":{"type":"string"}} can be
written as the shorthand {"label":"string"}. Varv concepts can
be referenced directly by name within the schema to specify nested
state. For example, Figure 2 defines the schema of a "todoList"
concept as an array of "todo" concept instances. Varv also supports
deriving properties from existing state by specifying a "derive"
object which expects an array of "properties" that are processed
through an array of "transform" actions. Varv merges the prop-
erties and actions to generate a function that produces the derived
value. For instance, in Figure 2, the "totalCount" property of the
"todoList" concept is calculated as the "length" (a built-in ac-
tion) of the "todos" property.

Early prototypes of Varv did not provide an explicit definition
of concept state. Instead, the state was implicitly created and ma-
nipulated through sequences of actions. However, as we built in-
creasingly complex applications, we discovered that this implicit
treatment reduced visibility [12] into concept state (i.e., it was not
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can facilitate future research on more usable, higher-level systems
for reprogrammable interactive software.

2 THE VARV LANGUAGE
2.1 Design Goals
Varv’s design is motivated by the following three design goals:

Provide a Structured Declarative Representation. Declarative rep-
resentations have become widely adopted in various domains be-
cause they allow users to focus primarily on composing domain-
specific primitives at a higher level of abstraction while deferring
execution concerns to the underlying architecture or runtime [28].
Varv uses declarative language constructs to define application
state and state transitions and provides an execution engine that
parses declarative Varv specifications to produce an interactive
application. Moreover, inspired by declarative representations of
interactive visualizations like Vega [66] and Vega-Lite [65], Varv
embeds its declarative representation of interactive software as
a data structure expressed as JSON. In doing so, Varv lowers the
threshold for programmatically reasoning about the semantics of
interactive software. As a result, it becomes more feasible for the
Varv architecture to hot-swap declarative specifications to enable
live programming and an ecosystem of higher-level development
tools to flourish (akin to the one found around Vega and Vega-
Lite [70, 72, 73]).

Accretive Extensibility. Developers currently rely on extensibility
APIs written by software creators to extend interactive software.
However, such an approach presents a catch-22: it can be difficult,
if not impossible, to customize an application in a particular way
if the creator did not design a corresponding API. In contrast, to
reduce a creator’s burden of explicitly designing for extensibility,
Varv defines interactive applications in terms of individual units
called concepts. To extend a Varv application, a developer need only
add a new specification to the runtime with entries to augment
or override properties of existing concepts or introduce new con-
cepts from a combination of existing parts. Thus, the extensions
are themselves units that layer on top of the base definition of
an application. This incremental approach facilitates experimen-
tation: a developer can safely try implementing new features, or
an end-user can selectively enable or disable extensions without
fear of breaking or changing the original program. Moreover, this
process of extension-by-addition simplifies resolving conflicting ex-
tensions by adding another specification to resolve the conflicting
properties. Hence, our aim is the open authorial principle [7] that
states that program modification should be possible purely through
composition without rewriting existing code.

Decouple Application Logic from Interaction Modality. Existing
methods for specifying interactive behaviors— namely, event call-
backs— tightly couple an input event (e.g., mouse clicks, keypresses,
swipe gestures) with the resultant action it triggers (e.g., selecting a
piece on a board game, moving it from one square to another). As a
result, retargeting an interactive application from one modality to
another (e.g., desktop to mobile) or supporting custom interactive
triggers (e.g., keyboard shortcuts) requires significant manual de-
velopment effort. Varv decouples these two pieces: an application

can be defined in an abstract, purely self-contained manner with
custom, semantically-meaningful event names taking the place of
low-level input events (e.g., pieceSelected instead of click). A
subsequent specification then makes this abstract definition more
concrete by binding semantic events to a specific interaction modal-
ity (e.g., pieceSelected is triggered by a tap).

2.2 Language Primitives
Concepts (see Figure 2 C ) are Varv’s core building block. They
define individual named units of interactive behavior— for example,
an “item” in a todo list that can be assigned or marked as completed,
or a “piece” that can be moved along the squares of a board game or
jump over other pieces. Each concept comprises a schema S , which
determines the concept’s state (i.e., data), and actions A , which
enumerate the ways this state can change through interaction.
Concepts can be augmented or extended in two ways: additional
specifications can be introduced (e.g., Figure 2b) which reference
an existing concept by name, and extend or override its properties;
or, a variety of extension E operators can be used to define new
concepts from existing parts.

Varv’s concepts combine ideas from several different program-
ming paradigms. At first glance, concepts seemingly map to classes
in object-oriented programming (OOP), offering a mechanism for
modularity, reuse, mixins, and traits. However, Varv’s concepts
make a fundamental departure: concepts are not encapsulated units
(i.e., a concept’s state and actions can be referenced from another).
This design choice emulates the Store design pattern adopted by
many popular JavaScript frontend libraries (e.g., Redux, Vue, and
Svelte). Stores centralize application states, decoupling them from
state transitions to aid rapid prototyping and developing cross-
cutting components. Varv’s unencapsulated concepts retain this
affordance without sacrificing the modularity of OOP classes. We
elaborate on these and other differences between Varv and existing
programming paradigms in subsection 7.3.

2.2.1 Schema. The schema defines the shape and type of data as-
sociated with a concept. The syntax for the schema definition uses
a modified version of JSON Schema [62] and supports a subset of
the JSON Schema functionality. Varv extends JSON Schema with
shorthands, making the language more concise and easier to read
and write. For example, {"label":{"type":"string"}} can be
written as the shorthand {"label":"string"}. Varv concepts can
be referenced directly by name within the schema to specify nested
state. For example, Figure 2 defines the schema of a "todoList"
concept as an array of "todo" concept instances. Varv also supports
deriving properties from existing state by specifying a "derive"
object which expects an array of "properties" that are processed
through an array of "transform" actions. Varv merges the prop-
erties and actions to generate a function that produces the derived
value. For instance, in Figure 2, the "totalCount" property of the
"todoList" concept is calculated as the "length" (a built-in ac-
tion) of the "todos" property.

Early prototypes of Varv did not provide an explicit definition
of concept state. Instead, the state was implicitly created and ma-
nipulated through sequences of actions. However, as we built in-
creasingly complex applications, we discovered that this implicit
treatment reduced visibility [12] into concept state (i.e., it was not
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W when: [{ action: "toggleCompleted" }}],
T then: [...]

T then: [...]

S schema: {
S todos: { array: "todo" },
S completedCount: "number",
S totalCount: { "number": {
S derive: {
S properties: [ "todos" ],
S transform: [{ length: "todos" }]
S }
S }}
S },

S schema: { text: "string", completed: "boolean" },

S schema: { assignedTo: "string" }

C concepts: {
C todoList: {

C },
C todo: {

C },
C assignable: {

C }
C }
E extensions: [
E { join: [ "todo", "assignable" ],
E as: "assignableTodo"
E }
E ]

A actions: {
A updateCompletedCount: {

A }
A }

A actions: {
A toggleCompleted: {

A }
A }

(a) A concept definition that is abstract as it does not reference spe-
cific interaction modalities.

A actions: {
A toggleCompleted: {

A }
A }

W when: [{ click: { view: todoCheckbox }}]

C concepts: {
C todo: {

C }
C }

(b) Extending the abstract specification with concrete references
to modality-specific input events (the toggleCompleted seman-
tic event, defined in the abstract concept, is triggered when the
todoCheckbox widget is clicked).

Figure 2: The components of a Varv concept definition for
a simple todo list. As a convention, and to demonstrate the
merging of concept definitions, we split the definition into
an abstract and a concrete part. The abstract part provides
definitions for a todoList, a todo, and an assignable con-
cept C . Each concept has a schema S and the todo concept
has an action A which encodes a state transition (omitted)
in a then-block T . An extension E is used to create an assign-
able todo by joining the todo and assignable concepts. The
concrete part binds the toggleCompleted action to an inter-
action specific to a DOM view using a when-block W . (Quota-
tion marks from JSON keys removed for readability.)

clear what properties were available for access on a given concept).
In contrast, by explicitly enumerating a concept’s properties and
their types, Varv schemas help formalize concept state. They serve
as a baseline level of documentation for the structure of concepts
within the program, and types are validated at runtime to reduce
error-proneness [12]. Schemas, moreover, aid concept reusability.
For instance, in early prototypes, Varv stored concept state directly
on DOM nodes. This approach introduced hidden dependencies [12],
making it challenging to adapt concepts to new contexts without
introducing knock-on effects to the output interface. It, similarly,
introduced a premature commitment [12] by requiring every con-
cept to be reified as an interface element. In contrast, with schemas,
concepts can be reasoned about in purely abstract ways and refer-
enced throughout a declarative specification without being mapped
to a concrete user interface component.

2.2.2 Actions and Triggers. Actions provide a common abstraction
for specifying state transformations, and consist of two parts: an
optional when-block W and, a required then-block T .

The when-block defines an array of triggers or events that cause
the action to be executed. Varv provides two types of triggers (see
Appendix C). Reactive triggers govern concept space: they fire
when a concept’s state changes, or when a concept’s action finishes
executing, or at a given interval. For instance, in Figure 2a, the
updateCompleteCount action makes use of a reactive trigger—
this action executes once the toggleCompleted action of the todo
concept has run to completion. View triggers, on the other hand,
fire when input events (e.g., mouse clicks or key presses) occur. For
example, Figure 2b demonstrates how an additional specification
can bind purely abstract concrete definitions to concrete interface
elements using view triggers— the toggleCompleted action of the
todo concept fires when the todoCheckbox element is clicked.

The then-block specifies an array of actions that should be exe-
cuted. Nested actions can include either other concept actions or
Varv’s primitive low-level actions (see Appendix B). These built-in
actions include operations for manipulating a concept’s state (e.g.,
arithmetic calculations, string and array manipulations, etc.) as well
as determining control flow (e.g., early exiting a chain of actions,
or forking the chain to execute an independent action). This design
allows for recursion (i.e., an action can call itself within the then-
block), with a "where" control flow action used to indicate the ter-
minating condition. The output of an action can be referenced using
the dollar sign— by default, the output is named for the action (e.g.,
$length references the output of an upstream "length" action) but
these variables can be renamed using the "as" property offered on
many actions. Finally, actions can be parameterized using the using
the @-symbol in front of parameter names, e.g., "@newTodoLabel".
These parameters can subsequently be provided as properties when
referencing the action downstream. The addNewTodo action shown
in Appendix A.1 provides a complete example of these ideas. When
it is executed, it creates a "new" instance of the todo concept using
the value provided by the newTodoLabel parameter (populated on
line 45). The output of this action is stored in the $newTodo vari-
able (due to the "as" property specified on line 25), and is used to
append to the list of todos.

Concept actions do not need to define both blocks. Rather, con-
cept actions can be directly defined as a then-block (bypassing

. An extension 
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can facilitate future research on more usable, higher-level systems
for reprogrammable interactive software.

2 THE VARV LANGUAGE
2.1 Design Goals
Varv’s design is motivated by the following three design goals:

Provide a Structured Declarative Representation. Declarative rep-
resentations have become widely adopted in various domains be-
cause they allow users to focus primarily on composing domain-
specific primitives at a higher level of abstraction while deferring
execution concerns to the underlying architecture or runtime [28].
Varv uses declarative language constructs to define application
state and state transitions and provides an execution engine that
parses declarative Varv specifications to produce an interactive
application. Moreover, inspired by declarative representations of
interactive visualizations like Vega [66] and Vega-Lite [65], Varv
embeds its declarative representation of interactive software as
a data structure expressed as JSON. In doing so, Varv lowers the
threshold for programmatically reasoning about the semantics of
interactive software. As a result, it becomes more feasible for the
Varv architecture to hot-swap declarative specifications to enable
live programming and an ecosystem of higher-level development
tools to flourish (akin to the one found around Vega and Vega-
Lite [70, 72, 73]).

Accretive Extensibility. Developers currently rely on extensibility
APIs written by software creators to extend interactive software.
However, such an approach presents a catch-22: it can be difficult,
if not impossible, to customize an application in a particular way
if the creator did not design a corresponding API. In contrast, to
reduce a creator’s burden of explicitly designing for extensibility,
Varv defines interactive applications in terms of individual units
called concepts. To extend a Varv application, a developer need only
add a new specification to the runtime with entries to augment
or override properties of existing concepts or introduce new con-
cepts from a combination of existing parts. Thus, the extensions
are themselves units that layer on top of the base definition of
an application. This incremental approach facilitates experimen-
tation: a developer can safely try implementing new features, or
an end-user can selectively enable or disable extensions without
fear of breaking or changing the original program. Moreover, this
process of extension-by-addition simplifies resolving conflicting ex-
tensions by adding another specification to resolve the conflicting
properties. Hence, our aim is the open authorial principle [7] that
states that program modification should be possible purely through
composition without rewriting existing code.

Decouple Application Logic from Interaction Modality. Existing
methods for specifying interactive behaviors— namely, event call-
backs— tightly couple an input event (e.g., mouse clicks, keypresses,
swipe gestures) with the resultant action it triggers (e.g., selecting a
piece on a board game, moving it from one square to another). As a
result, retargeting an interactive application from one modality to
another (e.g., desktop to mobile) or supporting custom interactive
triggers (e.g., keyboard shortcuts) requires significant manual de-
velopment effort. Varv decouples these two pieces: an application

can be defined in an abstract, purely self-contained manner with
custom, semantically-meaningful event names taking the place of
low-level input events (e.g., pieceSelected instead of click). A
subsequent specification then makes this abstract definition more
concrete by binding semantic events to a specific interaction modal-
ity (e.g., pieceSelected is triggered by a tap).

2.2 Language Primitives
Concepts (see Figure 2 C ) are Varv’s core building block. They
define individual named units of interactive behavior— for example,
an “item” in a todo list that can be assigned or marked as completed,
or a “piece” that can be moved along the squares of a board game or
jump over other pieces. Each concept comprises a schema S , which
determines the concept’s state (i.e., data), and actions A , which
enumerate the ways this state can change through interaction.
Concepts can be augmented or extended in two ways: additional
specifications can be introduced (e.g., Figure 2b) which reference
an existing concept by name, and extend or override its properties;
or, a variety of extension E operators can be used to define new
concepts from existing parts.

Varv’s concepts combine ideas from several different program-
ming paradigms. At first glance, concepts seemingly map to classes
in object-oriented programming (OOP), offering a mechanism for
modularity, reuse, mixins, and traits. However, Varv’s concepts
make a fundamental departure: concepts are not encapsulated units
(i.e., a concept’s state and actions can be referenced from another).
This design choice emulates the Store design pattern adopted by
many popular JavaScript frontend libraries (e.g., Redux, Vue, and
Svelte). Stores centralize application states, decoupling them from
state transitions to aid rapid prototyping and developing cross-
cutting components. Varv’s unencapsulated concepts retain this
affordance without sacrificing the modularity of OOP classes. We
elaborate on these and other differences between Varv and existing
programming paradigms in subsection 7.3.

2.2.1 Schema. The schema defines the shape and type of data as-
sociated with a concept. The syntax for the schema definition uses
a modified version of JSON Schema [62] and supports a subset of
the JSON Schema functionality. Varv extends JSON Schema with
shorthands, making the language more concise and easier to read
and write. For example, {"label":{"type":"string"}} can be
written as the shorthand {"label":"string"}. Varv concepts can
be referenced directly by name within the schema to specify nested
state. For example, Figure 2 defines the schema of a "todoList"
concept as an array of "todo" concept instances. Varv also supports
deriving properties from existing state by specifying a "derive"
object which expects an array of "properties" that are processed
through an array of "transform" actions. Varv merges the prop-
erties and actions to generate a function that produces the derived
value. For instance, in Figure 2, the "totalCount" property of the
"todoList" concept is calculated as the "length" (a built-in ac-
tion) of the "todos" property.

Early prototypes of Varv did not provide an explicit definition
of concept state. Instead, the state was implicitly created and ma-
nipulated through sequences of actions. However, as we built in-
creasingly complex applications, we discovered that this implicit
treatment reduced visibility [12] into concept state (i.e., it was not
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W when: [{ action: "toggleCompleted" }}],
T then: [...]

T then: [...]

S schema: {
S todos: { array: "todo" },
S completedCount: "number",
S totalCount: { "number": {
S derive: {
S properties: [ "todos" ],
S transform: [{ length: "todos" }]
S }
S }}
S },

S schema: { text: "string", completed: "boolean" },

S schema: { assignedTo: "string" }

C concepts: {
C todoList: {

C },
C todo: {

C },
C assignable: {

C }
C }
E extensions: [
E { join: [ "todo", "assignable" ],
E as: "assignableTodo"
E }
E ]

A actions: {
A updateCompletedCount: {

A }
A }

A actions: {
A toggleCompleted: {

A }
A }

(a) A concept definition that is abstract as it does not reference spe-
cific interaction modalities.

A actions: {
A toggleCompleted: {

A }
A }

W when: [{ click: { view: todoCheckbox }}]

C concepts: {
C todo: {

C }
C }

(b) Extending the abstract specification with concrete references
to modality-specific input events (the toggleCompleted seman-
tic event, defined in the abstract concept, is triggered when the
todoCheckbox widget is clicked).

Figure 2: The components of a Varv concept definition for
a simple todo list. As a convention, and to demonstrate the
merging of concept definitions, we split the definition into
an abstract and a concrete part. The abstract part provides
definitions for a todoList, a todo, and an assignable con-
cept C . Each concept has a schema S and the todo concept
has an action A which encodes a state transition (omitted)
in a then-block T . An extension E is used to create an assign-
able todo by joining the todo and assignable concepts. The
concrete part binds the toggleCompleted action to an inter-
action specific to a DOM view using a when-block W . (Quota-
tion marks from JSON keys removed for readability.)

clear what properties were available for access on a given concept).
In contrast, by explicitly enumerating a concept’s properties and
their types, Varv schemas help formalize concept state. They serve
as a baseline level of documentation for the structure of concepts
within the program, and types are validated at runtime to reduce
error-proneness [12]. Schemas, moreover, aid concept reusability.
For instance, in early prototypes, Varv stored concept state directly
on DOM nodes. This approach introduced hidden dependencies [12],
making it challenging to adapt concepts to new contexts without
introducing knock-on effects to the output interface. It, similarly,
introduced a premature commitment [12] by requiring every con-
cept to be reified as an interface element. In contrast, with schemas,
concepts can be reasoned about in purely abstract ways and refer-
enced throughout a declarative specification without being mapped
to a concrete user interface component.

2.2.2 Actions and Triggers. Actions provide a common abstraction
for specifying state transformations, and consist of two parts: an
optional when-block W and, a required then-block T .

The when-block defines an array of triggers or events that cause
the action to be executed. Varv provides two types of triggers (see
Appendix C). Reactive triggers govern concept space: they fire
when a concept’s state changes, or when a concept’s action finishes
executing, or at a given interval. For instance, in Figure 2a, the
updateCompleteCount action makes use of a reactive trigger—
this action executes once the toggleCompleted action of the todo
concept has run to completion. View triggers, on the other hand,
fire when input events (e.g., mouse clicks or key presses) occur. For
example, Figure 2b demonstrates how an additional specification
can bind purely abstract concrete definitions to concrete interface
elements using view triggers— the toggleCompleted action of the
todo concept fires when the todoCheckbox element is clicked.

The then-block specifies an array of actions that should be exe-
cuted. Nested actions can include either other concept actions or
Varv’s primitive low-level actions (see Appendix B). These built-in
actions include operations for manipulating a concept’s state (e.g.,
arithmetic calculations, string and array manipulations, etc.) as well
as determining control flow (e.g., early exiting a chain of actions,
or forking the chain to execute an independent action). This design
allows for recursion (i.e., an action can call itself within the then-
block), with a "where" control flow action used to indicate the ter-
minating condition. The output of an action can be referenced using
the dollar sign— by default, the output is named for the action (e.g.,
$length references the output of an upstream "length" action) but
these variables can be renamed using the "as" property offered on
many actions. Finally, actions can be parameterized using the using
the @-symbol in front of parameter names, e.g., "@newTodoLabel".
These parameters can subsequently be provided as properties when
referencing the action downstream. The addNewTodo action shown
in Appendix A.1 provides a complete example of these ideas. When
it is executed, it creates a "new" instance of the todo concept using
the value provided by the newTodoLabel parameter (populated on
line 45). The output of this action is stored in the $newTodo vari-
able (due to the "as" property specified on line 25), and is used to
append to the list of todos.

Concept actions do not need to define both blocks. Rather, con-
cept actions can be directly defined as a then-block (bypassing

. (Quota-
tion marks from JSON keys removed for readability.) 
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W when: [{ action: "toggleCompleted" }}],
T then: [...]

T then: [...]

S schema: {
S todos: { array: "todo" },
S completedCount: "number",
S totalCount: { "number": {
S derive: {
S properties: [ "todos" ],
S transform: [{ length: "todos" }]
S }
S }}
S },

S schema: { text: "string", completed: "boolean" },

S schema: { assignedTo: "string" }

C concepts: {
C todoList: {

C },
C todo: {

C },
C assignable: {

C }
C }
E extensions: [
E { join: [ "todo", "assignable" ],
E as: "assignableTodo"
E }
E ]

A actions: {
A updateCompletedCount: {

A }
A }

A actions: {
A toggleCompleted: {

A }
A }

(a) A concept definition that is abstract as it does not reference spe-
cific interaction modalities.

A actions: {
A toggleCompleted: {

A }
A }

W when: [{ click: { view: todoCheckbox }}]

C concepts: {
C todo: {

C }
C }

(b) Extending the abstract specification with concrete references
to modality-specific input events (the toggleCompleted seman-
tic event, defined in the abstract concept, is triggered when the
todoCheckbox widget is clicked).

Figure 2: The components of a Varv concept definition for
a simple todo list. As a convention, and to demonstrate the
merging of concept definitions, we split the definition into
an abstract and a concrete part. The abstract part provides
definitions for a todoList, a todo, and an assignable con-
cept C . Each concept has a schema S and the todo concept
has an action A which encodes a state transition (omitted)
in a then-block T . An extension E is used to create an assign-
able todo by joining the todo and assignable concepts. The
concrete part binds the toggleCompleted action to an inter-
action specific to a DOM view using a when-block W . (Quota-
tion marks from JSON keys removed for readability.)

clear what properties were available for access on a given concept).
In contrast, by explicitly enumerating a concept’s properties and
their types, Varv schemas help formalize concept state. They serve
as a baseline level of documentation for the structure of concepts
within the program, and types are validated at runtime to reduce
error-proneness [12]. Schemas, moreover, aid concept reusability.
For instance, in early prototypes, Varv stored concept state directly
on DOM nodes. This approach introduced hidden dependencies [12],
making it challenging to adapt concepts to new contexts without
introducing knock-on effects to the output interface. It, similarly,
introduced a premature commitment [12] by requiring every con-
cept to be reified as an interface element. In contrast, with schemas,
concepts can be reasoned about in purely abstract ways and refer-
enced throughout a declarative specification without being mapped
to a concrete user interface component.

2.2.2 Actions and Triggers. Actions provide a common abstraction
for specifying state transformations, and consist of two parts: an
optional when-block W and, a required then-block T .

The when-block defines an array of triggers or events that cause
the action to be executed. Varv provides two types of triggers (see
Appendix C). Reactive triggers govern concept space: they fire
when a concept’s state changes, or when a concept’s action finishes
executing, or at a given interval. For instance, in Figure 2a, the
updateCompleteCount action makes use of a reactive trigger—
this action executes once the toggleCompleted action of the todo
concept has run to completion. View triggers, on the other hand,
fire when input events (e.g., mouse clicks or key presses) occur. For
example, Figure 2b demonstrates how an additional specification
can bind purely abstract concrete definitions to concrete interface
elements using view triggers— the toggleCompleted action of the
todo concept fires when the todoCheckbox element is clicked.

The then-block specifies an array of actions that should be exe-
cuted. Nested actions can include either other concept actions or
Varv’s primitive low-level actions (see Appendix B). These built-in
actions include operations for manipulating a concept’s state (e.g.,
arithmetic calculations, string and array manipulations, etc.) as well
as determining control flow (e.g., early exiting a chain of actions,
or forking the chain to execute an independent action). This design
allows for recursion (i.e., an action can call itself within the then-
block), with a "where" control flow action used to indicate the ter-
minating condition. The output of an action can be referenced using
the dollar sign— by default, the output is named for the action (e.g.,
$length references the output of an upstream "length" action) but
these variables can be renamed using the "as" property offered on
many actions. Finally, actions can be parameterized using the using
the @-symbol in front of parameter names, e.g., "@newTodoLabel".
These parameters can subsequently be provided as properties when
referencing the action downstream. The addNewTodo action shown
in Appendix A.1 provides a complete example of these ideas. When
it is executed, it creates a "new" instance of the todo concept using
the value provided by the newTodoLabel parameter (populated on
line 45). The output of this action is stored in the $newTodo vari-
able (due to the "as" property specified on line 25), and is used to
append to the list of todos.

Concept actions do not need to define both blocks. Rather, con-
cept actions can be directly defined as a then-block (bypassing

and, a required then-block 
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W when: [{ action: "toggleCompleted" }}],
T then: [...]

T then: [...]

S schema: {
S todos: { array: "todo" },
S completedCount: "number",
S totalCount: { "number": {
S derive: {
S properties: [ "todos" ],
S transform: [{ length: "todos" }]
S }
S }}
S },

S schema: { text: "string", completed: "boolean" },

S schema: { assignedTo: "string" }

C concepts: {
C todoList: {

C },
C todo: {

C },
C assignable: {

C }
C }
E extensions: [
E { join: [ "todo", "assignable" ],
E as: "assignableTodo"
E }
E ]

A actions: {
A updateCompletedCount: {

A }
A }

A actions: {
A toggleCompleted: {

A }
A }

(a) A concept definition that is abstract as it does not reference spe-
cific interaction modalities.

A actions: {
A toggleCompleted: {

A }
A }

W when: [{ click: { view: todoCheckbox }}]

C concepts: {
C todo: {

C }
C }

(b) Extending the abstract specification with concrete references
to modality-specific input events (the toggleCompleted seman-
tic event, defined in the abstract concept, is triggered when the
todoCheckbox widget is clicked).

Figure 2: The components of a Varv concept definition for
a simple todo list. As a convention, and to demonstrate the
merging of concept definitions, we split the definition into
an abstract and a concrete part. The abstract part provides
definitions for a todoList, a todo, and an assignable con-
cept C . Each concept has a schema S and the todo concept
has an action A which encodes a state transition (omitted)
in a then-block T . An extension E is used to create an assign-
able todo by joining the todo and assignable concepts. The
concrete part binds the toggleCompleted action to an inter-
action specific to a DOM view using a when-block W . (Quota-
tion marks from JSON keys removed for readability.)

clear what properties were available for access on a given concept).
In contrast, by explicitly enumerating a concept’s properties and
their types, Varv schemas help formalize concept state. They serve
as a baseline level of documentation for the structure of concepts
within the program, and types are validated at runtime to reduce
error-proneness [12]. Schemas, moreover, aid concept reusability.
For instance, in early prototypes, Varv stored concept state directly
on DOM nodes. This approach introduced hidden dependencies [12],
making it challenging to adapt concepts to new contexts without
introducing knock-on effects to the output interface. It, similarly,
introduced a premature commitment [12] by requiring every con-
cept to be reified as an interface element. In contrast, with schemas,
concepts can be reasoned about in purely abstract ways and refer-
enced throughout a declarative specification without being mapped
to a concrete user interface component.

2.2.2 Actions and Triggers. Actions provide a common abstraction
for specifying state transformations, and consist of two parts: an
optional when-block W and, a required then-block T .

The when-block defines an array of triggers or events that cause
the action to be executed. Varv provides two types of triggers (see
Appendix C). Reactive triggers govern concept space: they fire
when a concept’s state changes, or when a concept’s action finishes
executing, or at a given interval. For instance, in Figure 2a, the
updateCompleteCount action makes use of a reactive trigger—
this action executes once the toggleCompleted action of the todo
concept has run to completion. View triggers, on the other hand,
fire when input events (e.g., mouse clicks or key presses) occur. For
example, Figure 2b demonstrates how an additional specification
can bind purely abstract concrete definitions to concrete interface
elements using view triggers— the toggleCompleted action of the
todo concept fires when the todoCheckbox element is clicked.

The then-block specifies an array of actions that should be exe-
cuted. Nested actions can include either other concept actions or
Varv’s primitive low-level actions (see Appendix B). These built-in
actions include operations for manipulating a concept’s state (e.g.,
arithmetic calculations, string and array manipulations, etc.) as well
as determining control flow (e.g., early exiting a chain of actions,
or forking the chain to execute an independent action). This design
allows for recursion (i.e., an action can call itself within the then-
block), with a "where" control flow action used to indicate the ter-
minating condition. The output of an action can be referenced using
the dollar sign— by default, the output is named for the action (e.g.,
$length references the output of an upstream "length" action) but
these variables can be renamed using the "as" property offered on
many actions. Finally, actions can be parameterized using the using
the @-symbol in front of parameter names, e.g., "@newTodoLabel".
These parameters can subsequently be provided as properties when
referencing the action downstream. The addNewTodo action shown
in Appendix A.1 provides a complete example of these ideas. When
it is executed, it creates a "new" instance of the todo concept using
the value provided by the newTodoLabel parameter (populated on
line 45). The output of this action is stored in the $newTodo vari-
able (due to the "as" property specified on line 25), and is used to
append to the list of todos.

Concept actions do not need to define both blocks. Rather, con-
cept actions can be directly defined as a then-block (bypassing

. 
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the @-symbol in front of parameter names, e.g., "@newTodoLabel". 
These parameters can subsequently be provided as properties when 
referencing the action downstream. The addNewTodo action shown 
in Appendix A.1 provides a complete example of these ideas. When 
it is executed, it creates a "new" instance of the todo concept using 
the value provided by the newTodoLabel parameter (populated on 
line 45). The output of this action is stored in the $newTodo vari-
able (due to the "as" property specifed on line 25), and is used to 
append to the list of todos. 

Concept actions do not need to defne both blocks. Rather, con-
cept actions can be directly defned as a then-block (bypassing 
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the nested format) and additional, separate specifcations can later 
bind actions to specifc interface elements. For example, Figure 2 
uses this convention to frst defne the abstract idea of a todoList 
comprised of todos which can be completed (Figure 2a). Note, 
the toggleCompleted action does not defne a when-block. In a 
subsequent specifcation (Figure 2b), this action is bound to click 
events that occur on the todoCheckbox element. By following this 
convention, a concept action can serve as an abstraction for a se-
quence of nested actions, and helps decouple the application logic 
of an interactive component from a specifc reifcation or modality. 

Varv also allows users to register custom actions written in 
JavaScript (see Appendix A.4). Custom actions can extend the Varv 
standard library with additional functionality, integrate Varv with 
existing JavaScript code, or let users write complex business logic 
using imperative code. 

2.2.3 Extensions. Extensions are mechanisms that enable the reuse 
of concepts. Out of the box, Varv supports merging and overwriting 
properties using naive declaration merging based on JSON keys. 
Figure 2 uses declaration merging to extend the toggleCompleted 
action on the todo concept with a when-block. However, during 
our prototyping process, we quickly realized that naive declara-
tion merging is limited to only extending or overwriting existing 
concepts. In particular, there is no way to use naive declaration 
merging to build higher-level concepts that are ad hoc compositions 
of existing concepts. 

To support more nuanced mechanisms for concept reuse, Varv 
ofers four extension operators: "inject", "join", "omit", and 
"pick". "inject" merges the defnition of one or more source 
concepts into another target concept. The source concepts are left 
unaltered while the target concept gains new functionality. The 
"join" operator is similar to "inject" but merges one or more 
source concepts to create a new concept, leaving source concepts 
unaltered. The "omit" operator takes a source concept and can 
remove actions and schema from the concept, altering the source 
concept, providing a mechanism to remove functionality via ad-
dition. The "pick" operator takes a source concept and selects a 
subset of the schema and actions to create a new target concept, 
leaving the source concept unaltered. Using these four operators, 
users can defne a library of concepts as mixins and inject them 
into other concepts to prototype applications rapidly. 

2.3 Event Flow 
Varv is an reactive and event-based system. Events in Varv are data 
objects that are used to transfer information. Events are emitted 
from triggers, passed on to actions, and then terminate once an 
action is performed. 

2.3.1 Event Contexts. Events contain contexts and shared variables 
(see Figure 3). A context is also a data object that consists of a 
concept instance, the target, and variables in the context. The target 
is required by many actions to defne on which concept instance 
an action should work. For example, consider a todo concept that 
contains the string property text. The action {"length":"text"} 
computes the length of the text property. In order to know from 
which instance the action should take the text property from, the 
target is used. Once the action is performed, the "length" action 

Context Target Context variables

Shared variables

Event

Figure 3: The structure of an event in Varv. 

adds the variable length with the result to the context variables of 
the respective context. 

An event can contain multiple contexts, because actions might 
need to work on multiple instances at once and do something for 
each of them. This is inspired by JavaScript array methods such 
as map [53]. The contexts of an event can be modifed by actions, 
e.g., the "select" action replaces the current contexts in an event 
with one context for each concept instance the selection defnes. 
Other actions also enable to remove contexts from an event, e.g., the 
"where" action flters contexts based on the properties of targets 
or variables in the context. Figure 4 shows an example where frst 
the "select" action is used to select all todo concept instances, 
then the "length" action is used to retrieve the length of the text 
property of a todo, and lastly the "where" action is used to flter 
the one with a length of less than four characters. 

2.3.2 Event Creation and Passing. Events are created by triggers. 
When creating an event, a trigger can add contexts to a new event, 
for example, the "click" trigger adds the concept instance of the 
element the user clicked on — if it is a concept instance — as a target 
and the coordinates of the mouse click as variables. 

Events are by default passed from one action to the next, each 
working on the same event. This, however, can lead to changes 
to the variables or contexts of an event. If an action should be 
performed without afecting the event, the "run" action can be 
used. This efectively makes it possible to split the event up. If an 
action removes all context from an event, by default, an empty 
event without contexts is passed on to ensure the execution of 
consecutive actions. In this case, however, the event would lose 
all its context variables. To prevent this, Varv stores variables that 
are the same across all contexts in the shared variables. These are 
persisted even if no contexts are in the event anymore and added 
back to context variables once new contexts appear. If an event 
should not be passed on if there are no contexts left, actions like 
"select" or "where" have an option to stop the event, allowing 
them to act as a gate. 

3 THE VARV ARCHITECTURE 
The overall architecture of Varv consists of six main components: 
the event engine that reads in concept defnitions, templates that 
defne how these concepts are rendered in the view layer, and map-
pings that defne where data from concept instances should be 
stored in the data layer (see Figure 5). This section summarizes the 
purpose of each of these components; their implementation in our 
Varv prototype is described in section 4. 
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Code

Data

Context

when: click
then:

select: todo length: text where: length < 4

text: shop

text: cook

text: eat

todoList

todo1

target: todoList
variables:

mouseX: 34
mouseY: 295

text: shop

text: cook

text: eat

todoList

target: todo1
variables:

mouseX: 34
mouseY: 295

target: todo2
variables:

mouseX: 34
mouseY: 295

target: todo3
variables:

mouseX: 34
mouseY: 295

text: shop

text: cook

text: eat

todoList

target: todo1
variables:

mouseX: 34
mouseY: 295
length: 4

target: todo2
variables:

mouseX: 34
mouseY: 295
length: 4

target: todo3
variables:

mouseX: 34
mouseY: 295
length: 3

text: shop

text: cook

text: eat

todoList

target: todo3
variables:

mouseX: 34
mouseY: 295
length: 3

{
“shortTodos”:{

"when":"click",
"then":[

{
"select":"todo"

},
{

"length":"text"
},
{

"where":"length < 4”
}

]
}

}

Action

todo2

todo3

todo1

todo2

todo3

todo1

todo2

todo3

todo1

todo2

todo3

Figure 4: Example of an event fow in Varv. The user clicks on the todo list in the app, triggering the action. The syntax of the 
"where" action was shortened here to simplify the example. 

3.1 Concept Defnitions and the Event Engine 
Concept defnitions are fles that use the concept language which 
was introduced in subsection 2.2 to defne the interactive behavior 
of an application. There can be any number of concept defnition 
fles in a Varv application. All concept defnitions are merged by the 
event engine at runtime. When being merged, concept defnitions 
later in the document overwrite earlier ones — i.e., existing concept, 
actions, and properties can be added, suppressed, or overwritten 
by adding new concept defnitions at the end of a document. 

To illustrate this merging process, we used the convention of 
splitting concepts into two parts in our examples: an abstract part, 
that contains actions that are view-agnostic, and a concrete part 
that contains actions that are view-dependent. By separating these 
parts, it is possible to reuse the core logic of a concept if another 
view is targeted. 

3.2 Templates and the View Layer 
The view layer contains views and templates. A view is a component 
that renders a user interface with which users can interact, for 
example the DOM. Making the view independent from the event 
engine, allows it to connect diferent types of views to the same 
underlying interactive behavior and state of an application. 

Templates are used to specify how state should be represented 
in the view by referring to concepts and properties in them (see 
Appendix A.3 for an example). A template is view-dependent, thus, 
diferent views require diferent templates. In the DOM, for example, 
a template could be written in HTML while in other views they 
might be required to provide a scene graph or other structures. The 
view then combines these templates with the state it retrieves from 

the event engine to generate a user interface. By generating the 
user interface in this way, elements in the view can be connected 
to their underlying concepts and state, allowing for higher-level 
tooling such as a view inspector (see subsection 6.2). Lastly, views 
can also add view-dependent view triggers, which can be used in 
actions in the concept defnitions to react to user input in the view. 

MappingMapping
Concept
Definition

MappingMappingMapping

Event engine

Data layer

View layer

MappingMappingView

MappingMappingData store

MappingMappingTemplate

Events

Updates

Figure 5: Architecture overview of Varv. 
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3.3 Mappings and the Data Layer 
The data layer contains data stores. Data stores allow Varv to store 
state of concept instances and their properties in them. A data 
store can be anything that can store data in a key-value format. 
One purpose of using a separate data layer in Varv is to be able to 
dynamically store data in heterogeneous ways, which allows users 
to defne properties in the schema of concept defnitions without 
having to take care of how and where it is stored. Another reason for 
using a data layer is to decouple the state of an application from the 
interactive behavior. This, for instance, enables to hot swap concept 
defnitions in the event engine or to connect diferent application 
to the same data store. The latter allows users to create their own 
personalized applications, but still being able to collaborate on 
shared data (subsection 5.1 demonstrates this). 

Mappings are pointers that defne in which data store state is 
stored. Mappings can be defned for each property of a concept. 
This allows, for example, to store ephemeral state like the content 
of an input feld in a data store that is not shared with other users. 
If properties are mapped to multiple data stores, Varv synchronizes 
state between all selected data stores. Data stores can, further, notify 
the event engine about updates to the data, for example, if a remote 
user changes data in a shared data store. The event engine then 
synchronizes the data with other data stores and notifes actions 
and the view about the change. 

4 IMPLEMENTATION 
Our main implementation of Varv2 is written in JavaScript, builds 
on top of the Webstrates [41] platform and the Codestrates v2 [13] 
framework, and runs purely client-side in a Web browser and uses 
Codestrates v2’s extensible in-app IDE Cauldron for development 
(see Figure 6a). This section will frst describe the Webstrates plat-
form and Codestrates framework and what parts are used for Varv. 
Then we explain how the control fow of Varv works and how we 
achieve live extensibility. 

We have also implemented a proof-of-concept version of Varv 
that is independent of Webstrates. We use this version of Varv 
to package Varv applications as Electron [60] apps using regular 
JSON and HTML fles stored on the disk for concept defnitions and 
templates (see Figure 6b). 

We, additionally ported this version of Varv to Observable [57] 
using tagged templates [54] for concept defnitions and templates. 
This makes it possible to use the computational notebook view of 
Observable to create, share, and incrementally develop Varv appli-
cations (see Figure 6c). Further, this demonstrates the portability of 
the Varv runtime to contexts outside of Webstrates. 

4.1 Building on Webstrates, Codestrates v2, 
and Cauldron 

4.1.1 Webstrates. Webstrates [41] is a software platform for build-
ing reprogrammable, collaborative software on the Web purely 
from the client side. The simple yet powerful mechanism behind 
Webstrates is to synchronize and persist changes to the DOM of a 
web page served from the Webstrates server. This includes changes 
to embedded code (JavaScript, CSS, and more), efectively making 

2Varv on GitHub: https://github.com/Webstrates/Varv (Retrieved November 25, 2021) 

it possible to both collaborate on using and programming software. 
As default the whole DOM is synchronized, but to support a relaxed 
WYSIWIS (What You See Is What I See), a custom <transient> ele-
ment can be used to create subtrees that are not synchronized — e.g., 
for UI elements. 

4.1.2 Codestrates v2 and Cauldron. Codestrates v2 [13] provides a 
model for controlling the execution and interdependence of scripts 
of various types.3 Furthermore, it provides an API for instantiating 
code editors for specifc scripts (stored in so-called code fragments) 
in the user interface. Codestrates v2 is bundled with its own ex-
tensible development environment Cauldron, which allows within-
application modifcation: users are able to create, edit, and run code 
fragments directly inside the web browser without additional soft-
ware (see Figure 6a). Codestrates v2’s execution engine can be used 
independently of Webstrates (e.g., as in our Electron prototype). 

4.1.3 Varv. Varv adds a new Codestrates v2 fragment type for 
concept defnitions. Templates are stored in HTML fragments and 
styling in CSS fragments. Varv leverages the synchronization with 
the Webstrates server to synchronize state that is stored in the 
"dom" data storage — enabling collaboration. Varv inherits the abil-
ity to edit code directly in the interface, collaborate in real-time, and 
version both data and code from Webstrates. Concept defnitions, 
templates, and the concept data store are all persisted in the DOM 
in custom tags hidden from the browser view using CSS. The user 
interface generated from Varv is wrapped in a transient element, 
hence synchronization of application state only happens through 
the data storage. 

4.2 Event Engine 
4.2.1 Building and Rebuilding the Model. The event engine queries 
all concept defnition fragments and parses their JSON code. Con-
cept defnitions are merged sequentially into a single defnition. 
Extensions to the concepts such as injections are performed af-
ter the merge in the order they appear in the concept defnitions. 
When a new concept defnition is added or any of the existing ones 
are changed or deleted, the running model is destroyed and a new 
model is built. Application state is not lost as it is stored separately 
in data stores. 

The merged model contains all concepts, schema, actions, map-
pings of properties, and data stores defned in the concept fles. 
Once merged, the engine uses the mapping and data store informa-
tion to connect properties of concepts to their mapped data stores 
and notifes the data stores of their connection. Afterwards, the 
view is notifed of the updated model. Lastly, the engine subscribes 
each action that has a when-block to their respective triggers. 

Primitive triggers register themselves in the event engine once 
instantiated. Once the trigger fres an event, which consists of a 
string containing the trigger name and a JavaScript object con-
taining the context, the event is passed to the event engine that 
distributes the event to the actions subscribing to that trigger. Like 
triggers, primitive actions register themselves in the event engine 

3While this model enables executing JavaScript code at runtime, Codestrates v2 does 
neither handle duplicate event listeners, other issues that come up when re-executing 
imperative code at runtime, nor synchronize runtimes across clients. Hence, limiting 
its use for live and collaborative programming. 

https://github.com/Webstrates/Varv
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(a) The main implementation of Varv. It 
builds on top of Webstrates. The Cauldron ed-
itor can be opened in the web browser. 

(b) A proof-of-concept implementation of Varv in 
Electron. 

(c) A proof-of-concept implementation 
of Varv in Observable. 

Figure 6: Screenshots of our implementations of Varv. 

once instantiated. Once an action is triggered, its actions are exe-
cuted: Each action receives the list of contexts in the event and the 
action options defned in the concept defnition (see subsection 2.3 
for more detail on the event fow). 

Actions with the same name can be defned in multiple concepts, 
thus, we provide a look-up function to fnd the correct action. To tar-
get a specifc action implemented in a concept, a dot-notation can be 
used, for example, "checkers.markValidSquares" or "othello 
.markValidSquares". There is a lookup order starting frst with 
primitive actions to searching for actions with a given name in any 
concepts in the model. 

4.3 Data Stores 
Types of data stores are registered in the event engine like triggers 
or actions. They can be used to create custom named data stores 
in concept fles. Our implementation of Varv defnes three types 
of data stores: "dom", "localStorage", and "memory". By default, 
properties are mapped to the "dom" data store, where they are per-
sisted and synchronized with other clients through Webstrates. An 

Webstrates

Codestrates v2

Cauldron IDE Varv

Tooling

Varv on Webstrates

Electron

OS file system

Codestrates v2

Varv

Visual Studio
Code

Varv extensions

Varv on Electron

Figure 7: The software stack of two of our Varv prototypes. 
Our main Webstrates-based implementation uses Cauldron 
as its editing environment with Varv-specifc tooling built 
on top. The Electron-based prototype uses Codestrates for 
code execution but is independent from Webstrates. Elec-
tron is used to store and load code from the fle system. Code 
can, e.g., be edited using Visual Studio Code, which could be 
extended (not implemented in our prototype) with Varv sup-
port by using JSON Schema or by porting our block-based 
editor. 

option for the "dom" data store can change the location for storing 
the state in the DOM to another webstrate, allowing multiple appli-
cations to work with the same data. Properties can also be stored 
in "localStorage" or "memory" data stores, if they are ephemeral 
or should not be shared with other clients. Our Electron-based 
prototype uses the "localStorage" data store for persistence. 

Once the event engine has loaded the model, it connects itself to 
the data stores defned in the model. Next, it maps each property 
to the data stores that it is mapped to and registers “getter” and 
“setter” callbacks of the data stores in the property. After registering 
the callbacks for each data store, the event engine attempts to 
load already existing data of a property from each data store and 
publishes it to all other data stores of that property and, hence, 
synchronizes them. If a property is mapped to multiple data stores 
that contain conficting data, the ones frst in the list of mappings 
overwrite the data of later ones. 

If data changes outside the Varv system, e.g., remote changes 
to the "dom" data store, a data store can notify the event engine 
about changes to properties, which will then synchronize it with 
other data stores and notify views and the "stateChanged" trigger. 
Changes to properties from actions or views are sent to the event 
engine and forwarded to the registered data stores. 

4.4 Views 
Views exist mostly independent from the rest of the Varv system. 
They can connect to the event engine and register to concepts and 
properties to get and set properties, as well as register their own 
triggers. Our implementation includes the "dom" view that renders 
data in the DOM of a website. 

It parses all <dom-view-template> nodes and collects what con-
cept instances are required by the templates. Next, it subscribes to 
these concept instances in the event engine and retrieves a list of 
concept instance objects with references to their properties. The 
view is notifed on updated properties, created or removed concept 
instances, and is able to set changes of properties — again, pass-
ing new values to the event engine, which forwards it to the data 
stores. If any template changes, the view unsubscribes all properties 
and repeats the process. In the templates, the "dom" view looks 
for special attributes (concept, property, and value) and replaces 
curly braces of properties in other attributes or text nodes with the 
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values of properties (see Appendix A.3). Additional style can be 
added using CSS and assets like images or icons can be uploaded to 
a webstrate using Cauldron. The "dom" view supports mouse and 
keyboard events as view triggers. 

5 CASE STUDIES 
To illustrate how Varv applications enable new ways of extending 
and modifying software, we present two case studies of how Varv 
can be used: The frst case study illustrates how an existing todo 
list application can be collaboratively modifed through addition 
of code. The second case study demonstrates how Varv can be 
used to create a declarative abstraction layer for board games and 
how diferent applications can be built using these abstractions. 
The case studies are also presented in the paper’s accompanying 
video. In addition to the two case studies, we briefy describe other 
application examples we explored. 

5.1 Case Study 1: Todo List 
Imagine two computer science students, Melissa and Daniel, who 
work together on a course project. To manage their tasks, they use 
a simple collaborative todo list web-app created in Varv. During the 
frst half of their project they work tightly together. However, they 
increasingly need to split up tasks and work on them in parallel. 
They now want a feature in the todo list that lets them assign todo 
items between them. 

Adding the “assignee” feld. To modify the todo list they click 
an “Edit” button in the top right corner of the interface to open 
Cauldron. There is a list of fles that includes the concept defnitions 
for the app: "todo", "todoList", and "todoInput". They need 
to modify the "todo" concept. Daniel creates a new folder with 
the name “assignee” with a new concept fle. He adds the new 
property {"assignee":"string"}, which stores the name of the 
person responsible for the todo item (see Figure 8a). Next, he needs 
to show that information in the view, so he also creates a new 
template fle. He copies over the template from the original todo 
item and adds a line with an input feld for the property. While 
doing so, he can immediately see the input feld appear in his view 
and test if it works by writing his name into the input feld. 

Adding fltering. Melissa’s friend Samantha has written a flter-
ing mechanism for the todo list. Melissa can add the fltering to their 
app by dragging the folder containing a concept, template and style 
fle, from Samantha’s in-app IDE Cauldron to hers. Daniel wants 
fltering on his own "assignee" feld as well. However, he does 
not really understand the fltering code so he asks Melissa for help. 
Together, they try to understand the code and Melissa adds some 
code to the fltering to also support the assignee fltering. While 
Melissa is coding, Daniel has the app open, and he can immediately 
try out the efects of code on the app. 

Using separate views. During the second half of their course, 
Daniel adds more and more features to the todo list. Melissa fnds 
the interface cluttered and wants a simpler app. So, she creates a 
copy of their todo list. In the copy, she deactivates all the features 
she does not want in her version of the todo list and — because 
she is making changes anyway — also adds a dark theme for the 

web-app. To still be able to work on the same data as Daniel, she 
remaps the data store of the new app to Daniel’s (see Figure 8b). 

How it works. Varv supports incremental application develop-
ment, thus, Daniel and Melissa can add functionality step-by-step. 
Adding new concepts or templates allows them to overwrite the 
parts of an app that they want, without having to change the origi-
nal implementation. This is enabled by the event engine merging 
all concept defnitions and rebuilding the model after every change. 
This, further, enables them to add new functionality from their peer 
Samantha without having to touch the code of the original todo 
list or their assignee feature. As they are adding new functionality 
accretively in new concept defnitions, it is also possible to go back 
to prior versions by disabling these defnitions in Cauldron. 

With Varv running on Webstrates, they can collaborate on the 
code of the app in Cauldron and test new functionality together. 
Varv makes the collaborative testing possible by automatically 
reloading concept defnitions whenever changes are done locally or 
remotely. As the todo app is stored in a webstrate where the app is 
self-contained, i.e. both the data and the application code are stored 
together, they can generate copies to create personalized applica-
tions. Decoupling the interactive behavior (concept defnitions) and 
the view from the data, further, makes it possible to remap the 
"dom" data store to another webstrate, providing means to create 
customized views while using the same data. 

5.2 Case Study 2: Board Game Toolkit 
Sean is a fan of board games like Checkers4 or Othello5. He has 
ideas for modifying existing games to make them more attractive 
and wants to realize some of them as web apps to play with friends. 

Building a toolkit. Sean wants to make a toolkit for games in Varv 
so he does not have to build new games from scratch. He starts by 
creating a "game" concept for more general game mechanics like 
taking turns and who the winner of a game is. Next, he creates the 
basic concepts of board games: the "piece" and the "square". Both 
share common traits: they have one of two colors and a location 
defned by a row and a column. Sean creates a shared mixin with 
helper actions for each of those and calls them "colorable" and 
"locatable". He injects both mixins into both concepts. In order 
to let players select and move pieces, he adds another mixin that 
he calls "markable", which enables him to mark pieces or squares. 
The mixin contains actions to, for instance, "mark" a piece or check 
whether a piece "isMarked". 

Creating Checkers and Othello with the toolkit. Next, Sean adds a 
new concept for the checkers game, where he adds actions that are 
specifc to Checkers, for example, to handle when a piece jumps over 
another piece. In doing so, he uses the actions from the concepts 
he created in the toolkit. Sean shows the game to his friend Amy. 
She wants to implement a game by her own. Amy makes a copy 
of Sean’s game and disables the Checkers concept fle. She then 
creates a new concept fle for her favorite board game Othello. After 
implementing the Othello game, she immediately tries out the game 
in a online multiplayer match against Sean. 
4Checkers or Draughts: https://en.wikipedia.org/wiki/Draughts (Retrieved Novem-
ber 25, 2021)
5Othello/Reversi: https://en.wikipedia.org/wiki/Reversi (Retrieved November 25, 2021) 

https://en.wikipedia.org/wiki/Draughts
https://en.wikipedia.org/wiki/Reversi
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(a) Daniel adds a new concept defnition to the todo list app and adds 
the "assignee" property. Once the concept defnition is activated, the 
property is immediately added to todos, seen in the inspector in the 
center bottom of the screen. 

(b) Daniel and Melissa can both use their preferred view and function-
ality in their app. While Daniel (left) uses more features and a light 
theme, Melissa (right) uses a more simple layout with a dark theme. 
The underlying data is shared. 

Figure 8: Screenshots of the frst case study. 

Modifying the games. Sean plays around with variants of his 
Checkers game. He makes concept defnitions that he can toggle 
on and of with small adjustments, which, e.g., enables pieces to 
move both forward and backwards all the time — making the game 
more complex to play. In yet another variant, he lets players have 
two consecutive turns after each other. For a fnal variant, Sean 
wants to combine the game rules of Amy’s Othello game with 
Checkers. He asks Amy to join him remotely in creating their own 
“Frankenstein-game” Checkers-O-Thello. They add a new concept 
defnition, where they resolve issues between the game rules of 
both games. After some fxes, they activate the game rules of both 
Othello and Checkers and can now use Othello’s game rules for 
placing pieces and Checkers’ game rules for moving pieces. 

How it works. Varv lets users create their own abstractions over 
complex state transformations in the form of custom concepts and 
actions. Sean leverages this by creating concepts for pieces and 
squares and by adding meaningful actions to them. By doing this, 
he efectively writes his own domain-specifc language for creating 
board games. Using this language in the Checkers game, he can 
think about high-level rules of the game, such as “Which are the 
valid squares a piece can move to if it was selected?” rather than 
low-level problems like “How do I detect if the when the user picks 
a piece?” Once created, these abstractions can be reused, so that, 
for example, Amy can also create her Othello game without having 
to solve low-level problems frst. 

This process of modifying games and creating variants of them 
is supported by Varv’s support for incremental application develop-
ment. It enables Sean to modify only some actions of the Checkers 
game in his variants, without having to recreate the whole game 
several times. When implementing the Checkers-O-Thello game, 
Varv’s real-time collaboration makes it possible for Sean and Amy 
to work together on the code, and state synchronization through 
the Webstrates-based data storage to play the game as a multiplayer 
game. As both of their games were created using the same abstrac-
tions, merging them is a straightforward task. They need to add a 
few actions to their game implementations to get the game rules of 
both games work together in a single game. By accretively adding 

these actions, they do not even have to touch the concept defni-
tions of the two already existing games — something that would be 
difcult to do in conventional imperative programming languages. 

5.3 Other Examples 
Besides the two case studies, we also explored creating other types 
of applications with Varv: 

UI Designer. The UI Designer can be used to create mock-ups of 
user interfaces and the navigation of apps — similar to Figma [22]. 
It lets users create multiple screens and add elements such as labels, 
boxes, or buttons within those screens (see Figure 9a). Elements 
can be moved and resized with the mouse cursor and can link to 
other screens. In the preview mode, interactions can be tested and 
used to navigate to other screens by clicking on them. 

Computational Notebooks. The Computational Notebook is writ-
ten in Varv and lets users write their own Varv applications using 
a computational notebook interface. Each cell in the notebook can 
be a concept defnition or a template making it possible to quickly 
sketch Varv applications (see Figure 9b). New cells can be added us-
ing buttons in the toolbar. The Computational Notebook also adds 
a custom action AddFragment (similar to Appendix A.4), written 
in JavaScript, which can add new fragments to the DOM. 

6 TOOLING 
To demonstrate how the architecture of Varv and its declarative 
language design lends itself to create tooling on top of it, we im-
plemented multiple authoring and debugging tools for Varv. The 
JSON-based data structures, in which Varv applications are defned, 
are simple and structured, so other authoring environments can 
be used to author Varv applications. The decoupled architecture of 
view, data, and event engine, in addition, facilitate to create inspec-
tors for data and the elements in the view — enabling not only to 
inspect the view of applications but also their interactive behavior. 
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(a) The UI Designer. (b) The Computational Notebook. 

Figure 9: Screenshots of other example applications we ex-
plored with Varv. 

6.1 Authoring Tools 
By specifying applications in Varv in JSON-based data structures, a 
common fle format in the modern Web, Varv provides a common 
interface for other authoring tools to connect with. We created three 
examples of authoring experiences that allow to defne interactive 
behavior in Varv. 

YAML-Based Editor. Readability and ease of writing actions could 
be improved by using YAML instead of JSON as the language for 
concept defnitions. As a superset of JSON, it is possible to add 
support for specifying concept defnitions in YAML instead of JSON. 
Using indented delimiting, YAML potentially makes writing code 
easier as less special characters are used (see Figure 10a). 

JSON Schema Auto-Completion. We created a JSON Schema [62] 
specifcation for the concept language and most of its primitive ac-
tions and triggers, and data stores. JSON Schema is widely used and 
supported by many code editors and IDEs as well as Cauldron. Reg-
istering the JSON Schema in these editors enables autocompletion, 
type checking, and validation (see Figure 10b). Autocompletion sup-
ports users in exploration, while type checking and validation can 
help to resolve wrong specifcations/parameters while writing the 
code. A current limitation of the JSON Schema is that it is limited 
to the primitive actions and triggers, actions that are defned in 
concepts are currently not added. 

Structured Block-Based Editor. To create a more tangible and ex-
plorable authoring experience, we implemented a structured and 
block-based editor (see Figure 10c). The editor is implemented us-
ing the Blockly [26] library and provides blocks for most primitive 
actions and triggers. The sidebar of the editor makes it easy to ex-
plore available actions and triggers. Editing concept defnitions in 
the editor automatically updates the JSON, creating a live program-
ming experience. By applying changes immediately to the JSON 
and hence the event engine, the editor allows for quicker ways 
to enable and disable actions and experimenting with diferent in-
teractive behavior. The block-based editor, however, has the same 
limitation as the JSON Schema, as it currently not dynamically adds 
actions from concepts as blocks. 

6.2 Debugging Tools 
The declarative structure of applications and the decoupling of the 
engine from the data and the view layer means that the view is 
generated from the data and the model in the event engine. In doing 
so, the view can be connected to both the interactive behavior and 
the underlying data. We show in two inspection tools how this 
connection can be leveraged to support debugging and testing. By 
bringing applications and the development environment with their 
underlying code closer together, we aim to make it easier for users 
to fnd the relevant code for their planned modifcations, lowering 
the threshold to modify their applications. 

Data Inspector. The data inspector lives inside the Cauldron ed-
itor (see Figure 11a). In its tree browser, concepts types and their 
instances can be modifed, created, or deleted. Selecting a concept 
shows its schema and actions, and selecting a concept instance 
shows its properties and their values in the inspector tab under-
neath the tree browser. Values can be edited and modifcations 
are directly applied in the view. Creating the data inspector was 
possible as the information about schema and actions of concepts 
is available in the model of the event engine in a structured format. 

View Inspector. The view inspector can be used in the "dom" view. 
By holding the control key and right-clicking on any element in 
the view, the view inspector shows a menu with information about 
the clicked element (see Figure 11b). The view inspector checks if 
the selected element or any of its parent elements is an instance 
of a concept and which template fles were used to generate the 
view. Using the information about the concept instance, the view 
inspector creates a link to the instance in the data inspector that 
users can follow to inspect the properties of the selected element. 

The view inspector is enabled by the decoupling of concept def-
nitions, data, and the view. As the view is generated at runtime and 
updated whenever a concept defnition or template is modifed, it 
always retains a connection to the concepts and data that were used 
to generate it. We created the view inspector as a step into breaking 
up the strict border between the application and the development 
environment, supporting users in fnding relevant code for their 
modifcations. 

7 RELATED WORK 

7.1 Declarative Programming 
Declarative languages separate the how from the what and allow 
users to focus on the specifcs of their domains [28]. Some would 
argue that Varv is not declarative because actions written in Varv 
consist of series of steps and can assign variables. However, com-
puter science literature does not provide a concrete notion of what 
declarative programming is. Lampson describes a declarative pro-
gram as a program which has few steps, is a good match for the users 
view of the problem domain, provides mechanisms for composition, 
gives big primitives so that users can get a lot done without having 
to write code, and allows for clean escape hatches so that imperative 
programming is allowed when needed [43, 63]. Varv meets all of 
these conditions. Varv provides high level primitives for binding 
data and updating state, enables rich mechanisms for composition, 
and allows users to specify custom actions using JavaScript. Addi-
tionally Varv provides capabilities for users to develop their own 
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(c) A block-based editor that enables explo-
ration of actions and triggers in the sidebar. 

(a) A YAML editor for concept defnitions. (b) JSON Schema for concept defnitions adds 
autocompletion and code validation. 

Figure 10: A summary of three implemented authoring tools in addition to editing JSON directly. 

domain specifc primitives, enabling greater expressivity in the 
large domain of interactive web applications. 

Declarative languages have become widely adopted in many 
domains because they make it easier to accomplish complex tasks. 

(a) The data inspector in the Cauldron editor. It can inspect concepts 
and their instances. The properties of instances can be edited in-
side the editor. Selecting a concept type or instance highlights the 
related element in the view. 

(b) The view inspector in the "dom" view. It can inspect elements and 
identify their concept type. Using the menu, it is possible to jump to 
concept instances in the data inspector or to the template fles used 
to generate the view. 

Figure 11: Two debugging tools for inspection we imple-
mented for Varv. 

Database query languages such as SQL have allowed database de-
velopers to focus on describing what data they want while the 
query optimizer determine how best to get the data using available 
indexes and joins [40]. HTML and CSS let web developers describe 
what markup and styling to use while the browser optimizes the 
page rendering [28, 40]. Vega-Lite lets users describe high level in-
complete visualization specifcations and uses heuristics and rules 
to resolve ambiguities and generate a visual representation which 
follows visualization best practices [72]. Beyond performance im-
provements, declarative languages are highly suitable for integra-
tion with higher level tools [66]. Within the Vega and Vega-Lite 
ecosystem Voyager [72], Lyra [64], and Altair [70] have been de-
veloped to let users generate visualizations through exploration, 
direct manipulation, and Python bindings respectively. 

Because of the benefts of declarative languages there have been 
many attempts to write declarative languages for the web. Many of 
these attempts such as Araneus [55], AutoWeb [25], STRUDEL [21], 
and WebML [15] provide declarative languages, both graphical 
and textual, which can be used to derive multi-page websites from 
various data sources. These projects use multiple approaches for 
specifying the structure, navigation, and presentation of websites, 
but are focused on sites where each page is a statically generated 
view of data rather than an interactive application. SOBL [19] is 
closer to Varv and provides a declarative specifcation for user 
interactions which is automatically parsed into static HTML web 
pages and state transition diagrams, but does not close the loop 
and generate interactive applications, or provide mechanisms for 
composition of existing programs. 

Vega and Vega-Lite [65–67] provide mechanisms to allow users 
to convert a defnition of a data visualization, written in JSON, 
into an interactive chart. Varv is an extension of the same idea 
to applications. Because of the similarity, Varv uses many similar 
mechanisms to Vega and Vega-Lite. For example both Vega and Varv 
allow users to defne reusable pieces of functionality by associating 
the functionality with a name and both Vega and Varv allow users to 
extend the runtime with user defned functions, while still allowing 
users to invoke the functions declaratively. 

KScript and KSWorld [58] are respectively a scripting language 
and an editor for end-user authoring of software, that emphasize 
reduction of accidental complexity and live programming to support 
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exploratory application building. Hence, the project shares similar 
goals with Varv. Also, similarly to Varv, KScript provides declarative 
language constructs for event-fow based programming. However, 
they are embedded in an object-oriented imperative programming 
language inspired by JavaScript, whereas Varv is a fully declarative 
programming model. 

7.2 Alternative Representations of Web 
Applications 

There is a long line of research which attempts to make writing 
simple web applications easier. Object Spreadsheets [50] identifes 
that many end-user programmers are familiar with the spread-
sheet model, and uses a new computational model for spreadsheets 
to enable the development of web applications. However, Object 
Spreadsheets is focused on providing powerful spreadsheet based 
mechanisms for data modeling, and provides few abstractions for 
enabling interactivity, and falls back on imperative scripting for 
mutating state. Quilt [11] provides a similar spreadsheet backed 
metaphor for web applications, but provides almost no data ab-
stractions, and acts essentially as an HTML attribute based tem-
plate language for binding elements on a web page to rows in a 
spreadsheets. Gneiss [16] provides a live programming environ-
ment for developing websites from web data using spreadsheets 
but does not provide mechanisms for code reuse or composition. 
Wildcard [46, 47] also uses a spreadsheet metaphor, but enables 
the augmentation of existing websites with additional data rather 
than the construction of independent applications. Varv provides a 
declarative specifcation for application logic and user interactions, 
as well as data bindings to a data store. Because Varv represents a 
declarative target, we believe high-level tooling such as live editing 
environments or integration with external data sources could be 
built on top of Varv. 

Mavo [71] allows users to develop CRUD applications with a 
template language built directly into HTML. The user defnes a data 
schema implicitly by adding attributes and expressions to HTML 
elements, and Mavo provides out of the box support for editing 
data directly in the interface. The primary goal in Mavo is to allow 
users to directly manipulate and defne the shape of a data schema 
in a UI layout. Varv also supports a template language but separate 
the defnition of the data model from the template. Varv has less 
emphasis on direct manipulation of data and instead focuses on 
composition and malleability of concepts. In addition, by separating 
data from the view, Varv allows users to write application logic 
once while targeting multiple view layers. Additionally, because 
the data logic in Mavo is encoded directly in the layout, creating 
new layouts while retaining existing data logic can be non trivial. 

7.3 Software Development Paradigms 
7.3.1 Object Oriented Programming (OOP). Varv’s notion of con-
cepts has direct parallels to classes in OOP. Concepts consist of 
two parts, a schema, and actions. The schema is similar to class 
properties, and the actions are similar to class methods. Varv’s ex-
tension methods — "inject" and "join" — are synonymous with 
mixins and traits. Because of these parallels, any of the interactive 
applications built-in Varv could be expressed with OOP. However, 
there are a few key diferences. Object-oriented code is imperative, 

which leaves less room for the underlying runtime to implement 
optimizations, and provides a more difcult target for higher-level 
tooling. Most object-oriented languages do not provide mecha-
nisms for modifcation or extension of classes without changing the 
source code. In contrast, Varv concepts are declarative, inherently 
structured, and support modifcation via addition. Varv concepts 
consist of primitives, which enable the high-level yet expressive 
specifcation of application and interaction logic. Varv concepts do 
not provide mechanisms for encapsulation, such as private vari-
ables. The lack of encapsulation forces Varv applications to replicate 
the store design paradigm from Flux applications and aids rapid 
prototyping. Additionally, Varv concepts support modifcation and 
extension via addition, enabling new workfows for the develop-
ment of interactive applications. 

7.3.2 Feature-Oriented Sofware Development. Incremental [14] 
or Feature-Oriented Software Development (FOSD) is an area of 
research that provides mechanisms to incrementally develop soft-
ware one feature at a time [3]. There are two general approaches 
to FOSD: compositional and annotative. Compositional approaches 
enable the development of features in distinct modules that can later 
be composed to create fully working applications. Most research 
implements compositional techniques as extensions to existing 
languages [2, 5, 8] but tools for adding compositional feature de-
velopment to arbitrary languages exist as well [4, 8]. Annotative 
approaches enable feature-oriented development using explicit an-
notations of source code, such as #ifdef [35]. In general annotative 
approaches provide greater fexibility because they allow the modi-
fcation of source code at the statement level, while compositional 
approaches provide better organization because code associated 
with each feature is modular and self contained [3]. 

Varv concepts implement a compositional approach to and retain 
similar limitations to past compositional systems. Compositional 
techniques generally do not provide mechanisms to introduce code 
fragments where order matters [35]. Within the context of Varv, 
this means there are certain cases where extending Varv programs 
requires duplication of existing code. Additionally, programs writ-
ten using a compositional FOSD paradigm can be difcult to reason 
about because the fnal program results from multiple distinct ar-
tifacts [35]. Higher-level tools which visualize the fnal combined 
program can help [35, 36]. We believe similar tooling could be 
developed for Varv as well. 

7.3.3 Conceptual Design of Sofware. Software engineers have long 
realized that they can build more complex and more efcient ap-
plications by sharing and reusing software components [52]. Déjà 
Vu [61] identifes that many web applications are built using com-
binations of similar components and provides a catalog of self con-
tained and reusable components — called concepts — which can be 
integrated using a declarative template language to build non trivial 
applications. Déjà Vu identifes that concept oriented architectures 
can allow for incremental development of applications by adding 
one concept at a time and testing functionality. In Déjà Vu the user 
is able to utilize concepts from a core catalog, and this catalog can 
be used to implement a wide variety of applications. However, if 
the user wants to implement their own concepts they need to write 
a frontend component and a backend server implementation. 
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Varv’s approach, including our choice to name its core build-
ing block a “concept,” is deeply inspired by Déjà Vu and Jackson’s 
writing on concept design [32, 33]. Varv implements a similar ar-
chitecture in which concepts are bound to the UI using a template 
language. However Varv provides a lower level catalog of abstrac-
tions, such as actions which can be used for modifying state, and 
triggers which can be used for listening to state changes or user 
interactions. Varv focuses on providing declarative mechanisms for 
users to compose lower level abstractions into higher level semantic 
or domain specifc abstractions. Varv also allows users to extend 
existing concepts and defne new concepts without dropping into 
JavaScript. By providing mechanisms for extension, Varv allows 
incremental development one feature at a time. 

8 DISCUSSION 

8.1 Limitations 
Varv is a research prototype and, as such, it does not yet provide 
all the features necessary for building production-grade interactive 
software. There are two classes of missing features: those which are 
straightforward to implement but missing due to time constraints 
and those which require careful thought and are potential research 
questions for future work. In the frst category are issues such as 
the lack of support for accessing remote or asynchronous data, the 
expressive limitations of Varv’s templates compared to templates 
found in popular frameworks such as React or Vue, and the rel-
atively small standard library of actions and events provided by 
Varv. In the second category are issues such as the lack of access 
controls, the choice of template languages for alternative substrates, 
the inability to extend templates via addition, the challenges in au-
thoring incrementally developed applications, and the challenges 
of supporting polymorphism in Varv. We expand on each of these 
issues from the second category below. 

Information Hiding and Access Controls. Concepts have no no-
tion of private properties, which means any concept can access the 
properties of any other concept. This lack of information hiding 
is a conscious design choice because it replicates the Store design 
pattern — a common approach adopted by frontend libraries (e.g., 
Redux, Vue, and Svelte) where application state is managed cen-
trally to simplify developing cross-cutting interface elements. In 
doing so, Varv facilitates rapid prototyping and extension but this 
limitation makes it challenging to write interactive software that 
contains private secrets, such as API keys and passwords, or that 
relies on limiting read or write access to data to specifc users, such 
as chat applications. Varv does ofer a limited workaround: users 
can defne local data stores that are not synchronized. These lo-
cal stores allow users to store things like confgurations but are 
not suitable for secrets since the data is still accessible by other 
concepts. It remains to be seen if we can augment Varv with a 
concise, descriptive, and legible syntax for annotating data with 
identity information and access controls while preserving the rapid 
prototyping afordances of our current approach. 

Defnition Files and Templates for Alternative Substrates. Varv 
is agnostic to the view layer, but the current template fles and 
bindings rely on the existence of a declarative syntax (HTML) for 

representing the DOM. One of the design goals for Varv is to decou-
ple application logic from interaction modality because we realized 
early on that it would be valuable to enable the rapid retargeting 
of interactions from one modality to another. We plan to integrate 
Varv with substrates outside the DOM environment, such as a We-
bGL view to support 3D or AR rendering or an IoT substrate that 
supports declarative interactive logic for intelligent devices such as 
lights and switches. We believe this is possible but are unaware of 
declarative template languages for expressing the view or, in the 
abstract, bindings between concepts and these substrates. 

Template Modifcation Via Addition. Varv’s templates support 
composition via template references, but when users add new fea-
tures to Varv applications, previous templates and template refs 
often have to be copied and modifed, complicating the development 
process, duplicating code, and efectively breaking with the open 
authorial principle [7]. The challenges of supporting template modi-
fcation via addition may be a limit posed by compositional methods 
to extension. In compositional approaches to feature-oriented soft-
ware development, it is considered impossible to introduce state-
ments in the middle of existing methods [35]. If we consider the 
template defnition synonymous with a function defnition, this 
limitation is also applicable to templates. AspectJ provides a unique 
approach by enabling the extension of method calls within specifc 
methods [38]. However, this multi-level approach to extension can 
be challenging to reason about and only covers certain cases, such 
as overriding a nested template in a specifc parent template. 

Authoring Challenges. While the presented debugging tools are 
a frst step to support authoring in Varv, the nature of accruing 
changes over time, possibly in many concept defnitions and tem-
plates, poses new questions regarding how tools can best support 
authoring incrementally developed applications: If an application 
is edited by multiple users over longer periods of time and each 
modifcation is added through addition, users have to traverse each 
fle, mentally tracking the incremental development of the appli-
cation’s concepts, actions, and triggers, in order to understand the 
application state. Future tools might support users by making it 
possible to inspect the current state of an application behavior, i.e. 
presenting the user the merged concept defnition and templates. 
While this would condense code into a single concept defnition 
and template, such a process might lose information about how and 
in which order modifcations were developed. Providing context 
and provenance for changes would be important. 

Supporting Polymorphism. When Varv injects a source concept 
into a target concept using extension mechanisms, the target con-
cept inherits the actions and properties of the source concept, but 
Varv does not form an is a relationship between the source and 
target concept. The target concept cannot populate properties or 
views which refer to the source concept, even though the target 
concept exposes the same interface of properties and actions as the 
source concept. This limitation is due to the event fow model. Al-
lowing multiple concept types to appear in the same set of contexts 
could create a set of contexts with diverging states, for example, if 
an action is defned diferently in the various concepts. Without 
polymorphism, it is not easy to create sets of similar objects which 
each have unique behavior. 
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Evaluating Usability. We have evaluated the feasibility and ex-
pressivity of Varv through demonstration [44]. However, we have 
not evaluated the usability of the programming model with actual 
users. A user study of user interface systems such as our work 
with Varv is challenging [44, 59]. Currently, our tooling for devel-
opment is proof-of-concept, and an — ideally longitudinal — study 
of software appropriation over time with Varv would require ex-
tensive tool support. Additionally, a user study would be required 
to understand whether users who are profcient programmers but 
unfamiliar with declarative programming, can make use of Varv. 

We chose an event driven architecture because event architec-
tures are well suited for incremental development [49]. Users can 
write new actions which run before or after any existing action or 
UI event in a Varv application, without changing the existing action 
or UI event. However, over-use of events can inhibit comprehen-
sibility and debuggability of larger programs [49]. Our authoring 
and debugging tools (see subsection 6.1 and 6.2) let users edit tem-
plates and view data associated with concepts, but future work 
could explore richer visualizations or tracing and debugging of the 
event graph, potentially easing the developer experience in larger 
applications. Additionally, a new runtime could explore alternative 
programming styles such as event-driven functional reactive pro-
gramming [66], or functional programming, which avoids issues of 
declaratively managing state. 

8.2 Future Work 
With Varv we have demonstrated that a declarative approach to 
specifying interactive applications as data structure is not only pos-
sible, but also provides a range of powerful capabilities. Through 
two very diferent applications built on top of Varv we have demon-
strated that the ceiling for what can be achieved with Varv is high, 
but we do not clearly know its bounds in terms of expressivity 
and performance. Thus, an immediate opportunity for future work 
would be to more systematically evaluate these two aspects. 

To better assess Varv’s performance, future work could begin 
by conducting comparative benchmark studies. Following the ap-
proaches used to evaluate the performance of frontend JavaScript 
libraries, these studies could measure both the performance (i.e., 
time taken) as well as memory consumption of running a suite of 
operations like rendering, manipulating, and updating thousands of 
interface elements. Besides empirical methods, future work on per-
formance optimization can also look to practices already adopted 
by these frontend libraries as well as techniques detailed in the aca-
demic literature on datafow management. For instance, as updating 
the DOM can be a computationally-intensive operation, React se-
lectively updates DOM nodes by maintaining an in-memory virtual 
DOM [20]. Similarly, the data stream management community has 
developed methods for incrementally processing data by fagging 
data tuples as either new or removed, and only passing these fagged 
tuples (rather than the full data table) between datafow nodes [1, 6]. 

Future work on determining Varv’s expressive ceiling can unfold 
in myriad ways. Our choice of implementing a todo list for our 
frst case study was motivated by TodoMVC [69], which provides 
a benchmark to compare how various Model-View frameworks 
implement todo list applications. A next step would then be to 
target alternate benchmarks such as the seven challenging GUI 

programming tasks from 7GUIs [39]. To scale this approach, one 
could turn to large datasets of interactive applications [18] and 
interaction traces [17] to catalog common classes of interaction 
techniques, and decompose them into recurring conceptual de-
sign patterns — an approach that Déjà Vu has already begun to 
explore [61]. While promising, these directions adopt primarily 
qualitatively methods to determine expressivity. An alternate ap-
proach might follow McGufn and Fuhrman [51] to more formally 
evaluate Varv’s expressivity. 

An exciting avenue for future work, and a direction inspired 
by the efect Vega [66] and Vega-Lite [65] have had in data visu-
alization, would explore higher-level systems for authoring Varv 
applications. In particular, by representing interactive software as 
a data structure, Varv makes it possible to programmatically rea-
son about the composition of applications. As a result, one can 
imagine building not only freeform direct manipulation graphi-
cal authoring environments (akin to Lyra in the Vega/Vega-Lite 
ecosystem [64, 73]) but also methods for recommending and auto-
completing interaction design (analogous to Data Voyager [72] or 
Juxxt [68]). For instance, a higher-level system might analyze the 
schema of concepts currently in use, and execute a lookup in the 
catalog to identify other concepts that are often used together or 
that have a complimentary schema. Besides the catalog described in 
the previous paragraph, such workfows would require the develop-
ment of additional infrastructure to support a “concept ecosystem,” 
i.e., mechanisms to package and share concept defnitions [27]. 

Such programmatic reasoning about the concepts that under-
lie interactive software also recalls ideas of instrumental interac-
tion described by Beaudouin-Lafon [9]. Namely, Beaudouin-Lafon 
envisions a future where interaction techniques — reifed [10] as 
“instruments” — rather than applications are the primary organiza-
tional unit of user interfaces. Thus, he imagines that interaction 
instruments can be reappropriated and used in contexts they were 
not initially designed for (e.g., using a snap-to-grid feature, typi-
cally found in vector graphics packages, but to organize the icons 
on your desktop). To realize such a vision, however, will require 
more sophisticated methods to compose and extend concepts than 
Varv currently supports. Here, one may look to the operators de-
scribed by Jackson [33] such as action or structure (schema) syn-
chronization, or Project Cambria’s [45, 48] approach of bidirectional 
lenses [23, 29, 30]. Reasoning about and applying the appropriate 
composition operators automatically would be a critical step on the 
journey to a cognitively convivial information space [24, 31]. 

9 CONCLUSION 
Modern software development techniques for constructing inter-
active software typically involve writing imperative code which is 
packaged and deployed as hermetically-sealed turnkey applications. 
Writing extensible software is an explicit choice and requires careful 
design choices. In contrast, Varv provides a declarative approach 
to developing software, yielding an accretive development process 
and applications that are inherently extensible. We have outlined the 
design goals of Varv and have explained how the components of the 
Varv language — concepts, schema, actions — help fulfll those design 
goals. We have demonstrated through two case studies the devel-
opment process enabled by Varv, showing how Varv can be used 
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to construct a domain specifc toolkit for building board games, 
and how Varv can be used to collaboratively and incrementally 
develop a shared todo list feature by feature. We provide two ex-
amples of higher level tooling built on top of Varv, an inspector 
for accessing relevant code directly from an application’s UI and 
an alternative Blockly-based editor interface. We hope that Varv 
inspires future research to enable non-programmers to develop 
interactive software. 
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A VARV LANGUAGE EXAMPLE 

A.1 Abstract Concept Defnition 

1 { 
2 " concepts ": { 
3 " todo ": { 
4 " schema ": { " label ": " string " } 
5 }, 
6 " todoList ": { 
7 " schema ": { 
8 " todos ": { " array ": " todo " }, 
9 " todosCount ": { " number ": { 
10 " derive ": { 
11 " properties ": [ " todos " ], 
12 " transform ": [ 
13 { " length ": " todos " } 
14 ] 
15 } 
16 }} 
17 }, 
18 " actions ": { 
19 " addNewTodo ": [ 
20 { " new ": { 
21 " concept ": " todo ", 
22 " with ": { 
23 " label ": " @newTodoLabel " 
24 }, 
25 " as ": " newTodo " 
26 }} , 
27 { " append ": { 
28 " property ": " todoList . todos ", 
29 " item ": " $newTodo " 
30 }} 
31 ] 
32 } 
33 }, 
34 " todoInput ": { 
35 " schema ": { 
36 " text ": " string " 
37 }, 
38 " actions ": { 
39 " activateInput ": [ 
40 { " get ": { 
41 " property ": " todoInput . text " 
42 }} , 
43 { " set ": { " text ": "" }} , 
44 { " addNewTodo ": { 
45 " newTodoLabel ": " $get " 
46 }} 
47 ] 
48 }, 
49 " mappings ": { 
50 " text ": [ " memory " ] 
51 } 
52 } 
53 } 
54 } 

Listing 1: Example of an abstract concept defnition of a tod
list app consisting of three concepts. 
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A.2 Concrete Concept Defnition 

1 { 
2 "concepts ": { 
3 "todo ": { 
4 "actions ": { 
5 "deleteOnClick ": { 
6 "when": { "click": { 
7 "view": "deleteButton " 
8 }}, 
9 "then": "remove " 

10 } 
11 } 
12 }, 
13 "todoInput ": { 
14 "actions ": { 
15 "activateInput ": { 
16 "when": [ 
17 { "key ": { 
18 "key ": "Enter ", 
19 "focus": "todoInput " 
20 }}, 
21 { "click": { 
22 "view": "addTodoButton" 
23 }} 
24 ] 
25 } 
26 } 
27 } 
28 } 
29 } 

Listing 2: Example of an concrete concept defnition of a 
todo list app. 

A.3 Template 

1 <dom -view -template > 
2 <template name ="todo "> 
3 <div > 
4 <span class ="text ">{text}</span > 
5 <span view =" deleteButton">Delete </span > 
6 </div > 
7 </template > 
8 <h2>Todo List </h2> 
9 <div concept =" todoInput "> 

10 <h3>Add New Todos </h3> 
11 <input value ="{ text}" /> 
12 <button view =" addTodoButton">Add Todo </button > 
13 </div > 
14 <div concept =" todoList "> 
15 <h3>Todos ({ todosCount }) </h3> 
16 <div class =" list "> 
17 <div property ="todos "> 
18 <template -ref template -name =" todo "> 
19 </template -ref > 
20 </div > 
21 </div > 

 22 </div > 
23 </dom -view -template > 

Listing 3: Example of a template of a todo list app. 

o
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A.4 Custom Action 

1 /** 
2 * Usage: define a function "foo " in global scope. 
3 * { "customJS ": { "func ": "foo " }} 
4 */ 
5 class CustomJSAction extends Action { 
6 constructor(name , options) { 
7 if (typeof options === "string ") { 
8 options = { func: options }; 
9 } 

10 super(name , options); 
11 } 
12 

13 async apply ( contexts , actionArguments ) { 
14 if ( this . options . func == null ) { 
15 throw new Error (" ' func ' must be set ") ; 
16 } 
17 

18 return this . forEachContext ( 
19 contexts , 
20 actionArguments , 
21 async ( context , options ) => { 
22 let func = options . func ; 
23 

24 if ( window [ func ] == null ) { 
25 throw new Error (`'${ func }' not defined `); 
26 } 
27 

28 if ( typeof window [ func ] !== "function ") { 
29 throw new Error (`'${ func }' is not a function `); 
30 } 
31 

32 return window [ func ]( context , options); 
33 } 
34 ); 
35 } 
36 } 
37 Action.registerPrimitiveAction (" customJS ", 
38 CustomJSAction); 
39 window.CustomJSAction = CustomJSAction; 

Listing 4: Example action which lets users run arbitrary 
global functions as actions. 

Action Name Description 

"concat" Concatenates an array of strings or vari-
ables to a new string. 

"enums" Returns an array of all possible enums of a 
string property. 

"length" Returns the length of a string. 
"textTransform" Transforms a string to uppercase, lower-

case, or capitalization. 

B LIST OF PRIMITIVE ACTIONS 

B.1 Concept Actions 
Action Name Description 

"count" Returns the count of instances of a given concept 
type. Filtering like in "where" is possible. 

"exists" Returns a boolean variable of whether there ex-
ist instances of a given concept type. Filtering 
like in "where" is possible. 

"get" Returns the value of a property of either the 
current target or from another concept instance. 

"new" Creates a new instance of a given concept with 
the given properties. Has an option to not select 
the newly created instance. 

"remove" Removes the current target concept instance or 
instances stored in a variable. 

"set" Sets the value of a property or variable. 

B.2 Control Flow Actions 
Action Name Description 

"eval"        Returns the boolean value of a fltering
expression. 

"exit" Terminates the action chain. 
"limit" Limits the number of context to a given 

count starting from the frst or last. 
"run" Runs an action with a copy of the current 

event and then continues with the action 
chain independent of the outcome of the 
other action. 

"select" Selects all instances of a given concept 
type. Filtering like in "where" is possible. 

"storeSelection" Stores the current selected targets in a 
variable in the event. 

"switch" Tests conditions for several branches and 
executes the action chain of the branch 
that matches. A default branch can be set 
and it contains an option to continue after 
a successful branch. 

"wait" Stops and waits with continuing the ac-
tion chain for a given duration. 

"where" Filters the current selection according to a 
given property or variable condition. Con-
ditions can be combined using “and”, “or”, 
and “not.” 

B.3 Boolean Actions 
Action Name  Description

"toggle" Inverts a boolean property or variable. 

B.4 String Actions 

B.5 Number Actions 
Action Name Description 

"calculate" Calculates a given mathematical expression. 
"decrement" Decrements a number property or variable by a 

given value. 
"increment" Increments a number property or variable by a 

given value. 
"random" Returns a random number within a given range. 
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B.6 Array Actions 
Action Name Description 

"append" Appends an item to an array property or vari-
able. 

"items" Returns the items of an array. Allows for fl-
tering items. 

"length" Returns the length of an array. 
"prepend" Prepends an item to an array. 

"removeFirst" Removes the frst item from an array. 
"removeItem" Removes the item on the given index from an 

array. 
"removeLast" Removes the last item from an array. 

C LIST OF PRIMITIVE TRIGGERS 

C.1 Reactive Triggers 
Trigger Name Description 

"action" Triggers when another given action is 
executed. Contains an option to specify 
whether it should trigger before or after the 
other action was executed. 

"interval" Triggers in intervals after a given time. 
"stateChanged" Triggers when a given concept or property 

changes. 

C.2 View Triggers 
Trigger Name Description 

"click" Triggers when a given concept, property, or 
view is clicked. 

"key" Triggers if a given key is pressed and optionally 
a concept, property, or view is in focus. 

"mouseDown" Triggers when a given concept, property, or 
view receives a mouseDown event. 

"mouseMove" Triggers when a given concept, property, or 
view receives a mouseMove event. 

"mouseUp" Triggers when a given concept, property, or 
view receives a mouseUp event. 

D LIST OF DATA STORES 
Data Store Name Description 

"dom" Stores data in the DOM of a website or web-
strate. Listens to changes to these elements. 

"memory" Stores data in memory that gets emptied 
after a page refresh. 

"localStorage" Stores data in the localStorage. 
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E LIST OF EXTENSIONS 
Extension Name Description 

"inject" Adds the schema and actions of one or mul-
tiple source concepts into a target concept. 
Properties or actions with the same name are 
overwritten by injected concepts in the order 
they are specifed. 

"join" Combines one or multiple source concepts 
into a new concept. Properties and actions 
with the same name are handled like in the 
"inject" extension. 

"omit" Removes the given properties and actions 
from a target concept. 

"pick" Takes the given properties and concepts of 
a source concept and creates a new concept 
based on those. 

F LIST OF DOM VIEW TEMPLATE TAGS 

F.1 Template Tags 
Tag Name Description 

<dom-view-template> Indicates the start and 
end of a template in the 
DOM view. 

<template name="some-name"> Allows to create named 
templates that can be 
reused using template 
references. 

<template-ref name="ref-name"> Allows to reference a 
named template and in-
sert it. 

F.2 Template Attributes 
Attribute Name Description 

concept Indicates that the given element should be 
rendered for each instance of the given con-
cept. 

property Indicates that the given element refers either 
to a property with type concept or to an array 
concept. 

view Indicates that the given element is a view that 
can be referred to in concept defnition fles. 

value Indicates that the given value of an text input, 
select or checkbox should be synchronized 
with the given property. 
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