
B2: Bridging Code and Interactive Visualization
in Computational Notebooks

Yifan Wu
UC Berkeley

yifanwu@berkeley.edu

Joseph M. Hellerstein
UC Berkeley

hellerstein@berkeley.edu

Arvind Satyanarayan
MIT CSAIL

arvindsatya@mit.edu

ABSTRACT
Data scientists have embraced computational notebooks to
author analysis code and accompanying visualizations within
a single document. Currently, although these media may be
interleaved, they remain siloed: interactive visualizations must
be manually specified as they are divorced from the analysis
provenance expressed via dataframes, while code cells have
no access to users’ interactions with visualizations, and hence
no way to operate on the results of interaction. To bridge this
divide, we present B2, a set of techniques grounded in treating
data queries as a shared representation between the code and
interactive visualizations. B2 instruments data frames to track
the queries expressed in code and synthesize corresponding vi-
sualizations. These visualizations are displayed in a dashboard
to facilitate interactive analysis. When an interaction occurs,
B2 reifies it as a data query and generates a history log in a new
code cell. Subsequent cells can use this log to further analyze
interaction results and, when marked as reactive, to ensure
that code is automatically recomputed when new interaction
occurs. In an evaluative study with data scientists, we find that
B2 promotes a tighter feedback loop between coding and inter-
acting with visualizations. All participants frequently moved
from code to visualization and vice-versa, which facilitated
their exploratory data analysis in the notebook.

Author Keywords
Data science, computational notebooks, exploratory
programming, interactive visualizations

CCS Concepts
•Human-centered computing → Visualization systems
and tools; Interactive systems and tools;

INTRODUCTION
Computational notebooks (e.g., Jupyter and Observable) have
become increasingly popular in data science because they en-
able literate computing [45]: a single document captures anal-
ysis code, textual observations, and visualizations of results.
These computational notebooks remain useful far beyond the
initial act of authoring: e.g., for auditing, reproducing, or

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
UIST ’20, October 20–23, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7514-6/20/10 ...$15.00.
http://dx.doi.org/10.1145/3379337.3415851

sharing data insights. Moreover, the structure of these note-
books — a series of executable cells — facilitates a more itera-
tive and interactive coding process well-suited for data science
workflows [12, 57]. Surveys and interviews with data scien-
tists, however, highlight the impoverished use of visualization
within computational notebooks. In contrast to visual analysis
tools such as Tableau (née Polaris [49]) or Microsoft PowerBI,
which offer rapid or automated specification of visualizations
and direct manipulation interactions to coordinate multiple
linked views, visualizations in notebooks are largely manually
specified single, static views [14, 57].

Recent work suggests that although notebook users could bene-
fit from richer support for interactive visualization, the friction
of switching between the two paradigms remains too high.
For example, although notebooks allow code cells and visual-
izations to be interleaved, these two types of artifacts remain
siloed [14]. Code cells cannot access the results of interactive
operations performed on visualizations — for instance, after
brushing a region on a scatter plot, data scientists cannot ex-
tract the selected points for subsequent analysis. This gulf is
exacerbated by the fact that interactive results are transient, a
property that violates literate computing. Unless an analyst
explicitly documents them — a rare practice due to the friction
it introduces [47] — these results are lost when a notebook
session ends. A similar disconnect also exists in the other di-
rection. Code cells express a rich analysis provenance, which
often has a natural correspondence to interactive visualizations.
Analysts, however, are unable to leverage this provenance and
are, instead, forced to manually specify interactive visualiza-
tions from scratch. Finally, interleaving code and visualization
cells may itself be an impediment. As there may be several
cells between successive visualizations, it is unlikely to have
more than one visualization visible on screen; thus, interac-
tion techniques become confined to operating over a single
visualization at a time, which provides only limited utility.

In response, we present B2, a library of techniques to bridge
the divide between code and interactive visualizations in com-
putational notebooks. To map between these two sides, we
need a shared representation of the work occurring on either
side. The fundamental task of data analysis involves iterative
data transformation, and both code and interactive visualiza-
tions can capture this task as a data query. In code, queries
are typically constructed through data frame manipulations or
as SQL statements while, in visualization, queries are often
expressed as interactive selections [28, 48, 60].

Figure 1. An analyst’s workflow with B2. They start by 1 importing the library which creates 2 a resizable dashboard pane to the right of the
traditional notebook. The analyst can 3 click on the columns, which creates 4 code that computes and 5 visualizes corresponding distributions. The
analyst can also write 6 a custom data frame query to create 7 the scatter plot. 8 B2’s reactive cells automatically recompute when new interactions
occur on visualizations. Interactions involve 9 selections of marks, which link or cross-filter the other visualizations in the dashboard, and are reified
in code cells as either 10 an interaction history or by 11 copying their composed predicate definitions.

To allow analysts to more seamlessly move from code to in-
teractive visualizations, B2 wraps a data frame library and
records the abstract syntax tree of queries that occur as a result
of data frame transformations. Based on this data lineage, B2
offers an additional vis API method on data frames which,
when invoked, automatically synthesizes an appropriate inter-
active visualization. For instance, consider the example shown
in Figure 1. An analyst imports a dataset about wildfires in
the United States1 as a B2 data frame. In a subsequent series
of cells, they first group the data by State, and then by Cause,
producing a new data frame each time. B2 tracks these steps
and using the data lineage, creates two histogram visualiza-
tions that can be interactively cross-filtered. By design, these
visualizations do not appear in the normal flow of notebook
cells. Rather, they appear within a secondary dashboard panel
to facilitate richer multi-view coordination [56] regardless of
where in an analysis process they are created.

To bridge the gulf in the other direction, B2 instruments its
visualizations to track the interactive selections that occur. An
API method materializes the selected state as a data frame,
thereby allowing analysts to conduct follow-up analysis of
interactive results in code. When such cells are marked as re-
active, they are automatically reevaluated as new interactions
occur. B2 also creates a new code cell to maintain a log of
interaction history — old entries are commented out and new

1https://www.kaggle.com/rtatman/188-million-us-wildfires

entries appended, with selections represented by their underly-
ing predicate definitions. In doing so, B2 reifies interactivity
and persists it in the flow of the literate computing notebook.
For instance, analysts can (un)comment entries in the log to
replay their interactions or compare states, can use code com-
ments to document meaningful interactive discoveries, and can
copy and paste selection predicates for downstream analysis.

We implement B2 as an open source extension for Jupyter note-
books available at https://github.com/ucbrise/b2, and evalu-
ate its efficacy through a first-use study with 7 participants.
Traces of participant behavior demonstrate they make use of
B2’s “bridges” to frequently switch between code and interac-
tive visualization, and qualitative comments indicate that B2
helps facilitate the exploratory data analysis process.

A DEMO OF B2
To place the design and goals of B2 in context, we present
a full demo following the wildfire example in Fig. 1. We
identify the times when the analyst, Sam, switches from code
to visualizations and switches from visualizations to code. We
also include a supplementary video demo of this section.

Sam first initiates B2 with code b2 = B2(), which creates a
dashboard to the right. She then loads in the fires dataset from
a CSV file using b2.from_file, which creates a list of columns
in the pane to the right. To start exploring, Sam switches to
the dashboard. She sees a State column and wonders how the
count of fires varies across states. She clicks on this column.

https://www.kaggle.com/rtatman/188-million-us-wildfires
https://github.com/ucbrise/b2

Figure 2. Snapshotting creates a cell in the notebook with an SVG of the
visualization, persisting the transient interactive state.

B2 then adds and executes a code cell that derives the distribu-
tion state_dist=df.group(’State’) and creates a visualization
in the dashboard state_dist.vis(). Sam then switches to a
markdown cell to record the insight that “CA has the highest
number of wildfires.”

To speed up code execution, Sam takes a sample of the data
frame (sample_df=df.sample(1000)). She then switches to the
dashboard to investigate the Cause for CA fires. She clicks on
the column Cause (which again generates a code cell deriving
a new dataframe and visualization) and then clicks on the
resulting State histogram to select the bar representing CA.
This interaction cross-filters the Cause histogram, with the
filtered CA fires shown in darker blue. To document this result,
Sam clicks Snapshot Charts which copies the visualizations
to a notebook cell (Fig. 2).

Sam now wonders if there are fewer fires in the early morning
since it is cooler. After clicking on the Time column, she
wishes to sort by time but notices some null values. So she
switches back to the code generated and filters out the null
values, formats the time, and specifies the visualization to sort
by the x-axis (Fig. 3). She verifies in the visualization that her
original hypothesis was true.

Besides distribution visualizations, B2 also supports custom
visualizations. She hypothesizes that there may also be a
correlation between fire size and time. She switches to

Figure 3. The top code cell is generated by B2 to visualize the distribu-
tion of Time, after a selection on the column pane by the analyst. The
bottom code cell is edited by the analyst from the code above, using func-
tions such as format, and where, to further refine the visualization.

Figure 4. The full state of the chart, including interactive se-
lections, is converted into code and made available through the
Copy Code to Clipboard button.

code, writes sample_df .select([’Time’, ’Size’).vis(), and
switches to the dashboard to inspect the resulting chart 7 and
interacts with it to explore. Sam notices that the cause of large
fires in the afternoons are mostly Lightning and wonders if the
fires caused by lightning in CA increases year over year, so she
clicks the Year column in the yellow column pane and then on
Lightning bar in the Cause histogram.

To model the rate of increase, Sam clicks on the menu item for
the histogram, Copy Code to Clipboard (Fig. 4), and switches
to paste the code into a new cell. The pasted code expresses
the interactive selections as composed query predicates—
sample_df.where(‘State’, ’CA’).where(’Cause’,’Lightning’).
Sam replaces sample_df with df, and writes a simple linear
model to fit the full dataset. She verifies that there is indeed a
trend upwards and notes the finding in a new markdown cell.

Having explored the “low hanging fruit”, Sam decides to dive
deeper into fire locations. She switches back to code, and
uses a Python library to draw a heatmap using the (Lat, Lon)
coordinates. To enable interactive analysis, she marks this cell
as %%reactive and uses a dataframe that materializes the inter-
active state via the get_filtered_data API, which returns the
rows of df filtered by the current selection (Fig. 5). Sam then
switches back to the dashboard and clicks on the Lightning

Figure 5. Contrast the top cell, which is static, to the reactive cell below.
The reactive cell can be iterated on using interactions.

bar in the Cause histogram. The reactive cell updates, showing
that Lightning is skewed towards the north-central states.

Finally, Sam sends this notebook to her collaborator Alex.
Alex starts by wanting a high-level overview of Sam’s process.
He clicks the Toggle button at the top of the notebook to
hide the interaction history cells, to more easily view Sam’s
code and markdown notes, as well as charts she explicitly
chose to persist via Snapshot . To validate Sam’s insights for
himself, Alex un-toggles the interaction histories, and replays
interactions by unfolding and (un)commenting relevant lines
in the history, and re-executing the cells. The charts in the
dashboard, as well as the reactive heatmap update in response.

RELATED WORK
Prior work has primarily investigated two mechanisms for
integrating code and direct manipulation interactions: using
interactions to parameterize code or generate code. Here,
we review these approaches and draw contrasts to B2, and
motivate its design through prior surveys of data scientists.

Interactions Parameterizing Code
Early systems like Juxtapose [26] and work by Bret Victor [52,
53, 54] helped popularize instrumenting code editors with
interactive controls [50]. Computational notebook platforms
offer analysts ways of instrumenting code with HTML widgets
(e.g., range sliders, radio buttons, checkboxes, and drop-down
menus). For instance, Jupyter offers Jupyter widgets [33], R
Markdown notebooks can be made interactive with shiny [21],
and Streamlit [2] and Observable [4] provide a standard library
of options. Widgets can be manually instantiated by analysts,
or can be automatically inferred using code semantics (e.g., the
@interact function decorator found with Jupyter widgets).
Across these platforms, widgets primarily serve to parame-
terize code — i.e., each widget maps to a single variable in
the code, and manipulating the widget re-executes the corre-
sponding code. In doing so, widgets help tighten the feedback
loop by allowing analysts to rapidly explore alternate input
parameters instead of rewriting and rerunning whole cells [3].

Widgets, however, are only an initial step towards endowing
code with interactive semantics. First, widgets have limited
expressivity — although they can be composed together into
interactive dashboards [1, 40, 41], widgets do not provide be-
haviors as rich as those found in interactive visualizations [62].
Second, widgets violate the literate computing goal of repro-
ducibility [45] as interactions with them are transient — the
results associated with a particular widget state are lost on
subsequent interactions. B2 builds on the benefits that wid-
gets bring to code, and extends them to interactive visualiza-
tions. Akin to the automatic synthesis found in features like
Jupyter’s @interact decorator, B2 tracks the lineage of data
frame derivations to generate visualizations and automatically
instruments them with interactivity. And, rather than sim-
ply parameterizing individual variables, interactive operations
populate intensional and extensional predicates called selec-
tions [48]. Finally, B2 persists these operations by maintaining
logs of interaction histories in new code cells.

Interactions Generating Code
The programming-by-example (PBE) community has a long
history of studying how user input can be used to synthesize
programs. For example, a user can provide concise input-
output pairs [23, 24], indicate hierarchical structure using
colored blocks [61], or record and replay interactions with lists
on web pages [13, 16]. These systems receive user interactions
as input and synthesize as output a program in a general-
purpose programming language.

While B2 takes inspiration from this line of work, our approach
most directly follows systems that establish a bidirectional re-
lationship between direct manipulation interaction and textual
specification of code. One example is Sketch-N-Sketch [18,
31, 32], which allows users to write a program to generate
SVG output, and then directly manipulate the SVG canvas to
modify the original code. Another example in the data domain
is Wrangler [25, 34], a data transformation interface that pro-
vides a direct-manipulation tabular interface reminiscent of a
spreadsheet, and maps user interactions into editable textual
histories that can be compiled into standalone code.

These approaches are motivated by recognizing that neither
direct manipulation nor coding is best suited for all tasks, but
combining them yields an accumulation of benefits — users
can rapidly and intuitively specify designs via direct manipula-
tion, but then switch to code to construct reusable abstractions.
This goal resonates with the results of recent surveys and in-
terviews of data scientists which find that visual interfaces are
most useful if their output can be captured in code [12, 17, 57].
Thus, akin to Sketch-N-Sketch and Wrangler, B2 provides
bidirectional bridges between code and interactive visualiza-
tions: B2 synthesizes appropriate visualizations by tracing the
data lineage expressed in code, and interactions performed
on the visualizations are logged to code cells to enable fur-
ther analysis. Critically, B2 differs in the domain it addresses
(cf. Sketch-N-Sketch) and in its support for richer interactive
visualizations integrated with general-purpose programming
languages (cf. Wrangler’s domain-specific language).

Systems like GUESS [11] and DEVise [42] are more closely
aligned with B2’s goal of bridging code and interactive visual-
ization. In particular, GUESS offers an environment where in-
teractions with graph visualizations can be captured in Python-
based REPL (read-evaluate-print loop), and textual commands
manipulate the visual output. DEVise identifies that interac-
tive visualizations can be modeled as SQL expressions, and
that multiple views can be coordinated by analyzing their
schemas — an approach analogous to B2’s automatic synthe-
sis of interactions based on data frame lineage. However,
B2 differs in two key ways. While GUESS and DEVise are
standalone systems, B2 is embedded within the existing data
science ecosystem — namely in computational notebooks and
by leveraging data frame APIs. In doing so, B2 must bridge
an additional set concerns that these prior systems did not
grapple with: how best to combine the highly iterative nature
and two-dimensional layout of interactive visualizations with
the persistence and linear layout of computational notebooks.

Meeting data scientists where they work is a motivation that
B2 shares with Wrex [20], a recent system that embeds a

visual data wrangling interface within the Jupyter notebook.
Building on the previous theme, a key insight of Wrex is that
it is not enough to simply embed PBE systems in context;
rather, to respect literate computing principles, the code these
systems synthesize must be human-readable. B2 follows this
insight in two ways. First, the interaction history that B2
produces is expressed as a series of human-understandable
API calls, rather than low-level event logs. And, second, to
preserve the linear flow of literate computing, B2 records these
interaction histories in new code cells placed directly after the
most recently executed cell.

Finally, B2 is contemporaneous with work by Kery et al. de-
veloping mechanisms to move “fluidly” between code and
graphical interfaces within computational notebooks [38]. In
particular, Kery et al. introduce %mage, a Jupyter extension
that provides APIs for graphical interfaces to affect notebook
state. They demonstrate how %mage can be used to provide a
spreadsheet interface to interactively manipulate data frames,
and extract or materialize interactive selections performed on
visualizations. Although %mage and B2 share a common set of
goals, the two systems differ in their scope: B2 targets integrat-
ing code with interactive visualizations specifically, whereas
%mage looks to graphical interfaces more broadly. This differ-
ence in scope yields salient differences and tradeoffs in how
the two systems achieve their desired outcomes. For example,
%mage uses string templates and pattern matching to translate
interactions to code — an approach that many different types
of graphical interfaces can target, but that can also be brittle
when trying to map code changes back to the interfaces. In
contrast, B2 records interaction histories as predicates, a repre-
sentation that is tailored to interactive visualization but is also
more robust to bidirectional changes. Moreover, by taking a
more focused scope, B2 identifies and addresses an additional
challenge with integrating code and visualizations that may not
apply to graphical interfaces more generally: restricting inter-
active visualizations to a linear flow of interleaved cell outputs
limits the creation of richer multi-view coordination [17, 56].

The Needs of Data Scientists
B2’s goal of bridging code and interactive visualization is mo-
tivated by recent surveys and interviews of data scientists [12,
14, 17, 57]. In particular, Wongsuphasawat et al. find that
data scientists often switch between several tools including
textual environments (e.g., MATLAB or Jupyter) and graph-
ical interfaces (e.g., Tableau or Microsoft PowerBI) during
their analysis sessions [57]. As Chattopadhyay et al. report,
this switching behavior forces analysts to repeat themselves
by manually translating work they conducted in code to visual
interfaces, or vice-versa [17]. For many data scientists, this
overhead is sufficiently prohibitive that they eschew visual
analysis tools altogether and restrict themselves to working
only in code [57]. Indeed, Batch and Elmqvist identify that
visualizations “should be first-class members of the analyti-
cal process so that actions and transformations interactively
performed in the component can be exported and passed on
to the next component in the sequence” [14] and Alspaugh et
al. call for new systems that combine the expressiveness of
programming and scripting languages, with the efficiency and
ease-of-use of visual analysis tools [12].

These studies also indicate the challenges of integrating code
and interactive visualizations within notebook environments.
For instance, analysts report frustrations with how the cell-
based structure of notebooks limits the usefulness of visual-
izations [17]. And, a naive integration of the two risks exac-
erbating existing concerns of notebooks being a “mess” [37],
full of “ugly code” and “dirty hacks” [47]. Recent work
has explored a spectrum of strategies to ameliorate this lat-
ter issue including version control that occurs automatically
for all artifacts in a notebook [36], on a per-cell basis [46],
or for manually-defined snippets [35], or tools for gathering,
cleaning, and comparing messy code [27]. Inspired by these
solutions, and in particular by their lightweight and in situ
nature, B2 records a history of interactions in new code cells.
Critically, to not further contribute to the spatial dimension of
mess [27], B2 merges contiguous selections into a single cell,
with old interactions commented out and folded.

Finally, recent work has also explored how to extend the liter-
ate computing paradigm to visual analysis. For instance, Wood
et al. introduce literate visualization [58] while Mathisen et al.
propose literate analytics [43]. While both approaches share
our goal of bridging literate computing and exploratory visual
analysis, their focus is on the narrative aspects of the pro-
cess. In particular, literate visualization introduces a schema
validator to prompt users to document their design decisions,
while Mathisen et al. implement InsideInsights, a system for
structured and hierarchical annotation of insights that are a
result of visual analysis. B2, by contrast, is concerned with
enabling analysts to move between the code-driven work of
literate computing and the interactive visualizations of ex-
ploratory visual analysis. Rather than focusing on promoting
documentation of insights, B2 synthesizes visualizations from
code semantics, and allows code to operate on the results of
interactions performed on visualizations.

THE GAPS BETWEEN CODE AND INTERACTIONS
Computational notebooks meld ideas from traditional scien-
tific notebooks and literate programming as envisioned by
Knuth [39]. Interactive visualization environments are inspired
by vehicle dashboard design and the ideas of Exploratory Data
Analysis as envisioned by Tukey [51]. However, there are
significant gaps between the metaphors of notebooks and dash-
boards, and the goals of programming and data exploration.

A rich integration of interactive visualization into notebooks
should strive for a composition of the benefits offered by both
paradigms. However, we identify three gaps that currently
hinder such integration: a semantic gap that prevents each side
from understanding the work that is happening in the other;
a temporal gap that allows only code to persist, and only in-
teractions on visualizations to be transient; and a layout gap
between the notebook’s linear structure and rich coordinated
multi-view visualizations. In this section, we describe these
gaps and their impact on an analyst’s workflow. We identified
these gaps by studying the pitfalls of computational notebooks
as reported by data scientists [12, 14, 17, 57], and by examin-
ing the design choices and tradeoffs manifest in prototypes we
developed through our iterative design process.

The Semantic Gap
At base, we assume that raw data to be analyzed is accessible
to both code and visualizations — via data frames for code,
and encoded as visualizations via the grammar of graphics.
However, neither side is able to capture the work that occurs
in the other. The code side has no access to the work involved
in interactions that are performed on a visualization. Thus,
visualizations become a “dead end” from code, unable to drive
subsequent analysis unless an analyst chooses to manually
code up insights they identified via visual interaction. Con-
versely, visualizations do not understand the work expressed in
code: specifically it is blind to the lineage of transformations
and derivations on a data frame. As a result, an analyst must
manually construct appropriate interactive visualizations from
scratch even if the code that specifies the data frame captures
semantics that can automate visualization design. For instance,
when data results from a group operator, it is typical to favor
a bar marks to produce a histogram. Similarly, visualizations
of two derived data frames that share a common ancestor can
often be usefully linked or cross-filtered. In both directions,
this semantic gap introduces friction into an analyst’s process
and prevents them from being able to “round-trip” their data
and their work without repeated specification of intent.

To bridge the semantic gap, it helps to have a shared ab-
straction to represent the work occurring on either side. The
fundamental task of data analysis involves the iterative trans-
formation of data, and both code and interactive visualizations
capture this task as data queries. In code, queries are expressed
as data frame manipulations — following our demo example,
df[df[’FIRE_SIZE’] > 500] returns a data frame of large fires
while df.group(’STATE’) groups tuples by the STATE field. For
visualization, although a wide variety of interactive techniques
are available [29], we consider those techniques that can be
modeled as data queries. Here, we turn to Vega-Lite [48],
which identifies a selection as a fundamental building block
for interaction design that is suitably expressive to cover an
established taxonomy of interaction techniques in data visual-
ization [62]. In particular, every Vega-Lite selection includes
a definition for a predicate, or a data query that determines
which tuples lie within the selection. These predicates are
defined in one of two ways: an intensional predicate specifies
a set of data points based on logical conditions that must be
satisfied, while an extensional predicates explicitly enumer-
ates a set of selected data points. In essence, an intensional
predicate is an expression (a piece of code), and an extensional
predicate is a fixed set of data.

With this shared representation in place, we can begin to trans-
late the data queries occurring in code to interactive visual-
ization, and vice-versa. For instance, by tracking the queries
expressed via data frame manipulations, we can automatically
synthesize appropriate visualizations and instrument them with
linked or cross-filtering interactions. Similarly, interactive se-
lections can be captured in code by their predicate definitions,
or by materializing them as data frames. We detail how to
operationalize these bridges in the subsequent section.

The Temporal Gap
Iteration is a critical process in data science. Both code and
interactive visualizations support iterative workflows, but they
occur at different time scales. The key mechanism for iter-
ating in code is cell execution: data scientists author their
analysis as a series of discrete steps (or “cells”) which can be
executed individually, sequentially, or out of the order they
were originally written in. Although cells may be edited and
re-executed any number of times, analysts often prefer to copy
and paste their code to a new cell to be able to compare differ-
ent iterations of an idea. Critically, however, all these cells and
their output are persistent — a property that facilitates liter-
ate computing goals of sharing and reproducing analyses, but
also contributes to the burdensome mess that data scientists
report. In visualizations, iteration occurs through repeatedly
performing interaction techniques that manipulate the view
(e.g., through highlighting or filtering points of interest). How-
ever, in contrast to the persistent nature of iteration in code,
iteration through interacting on a visualization is entirely tran-
sient. This transience violates a key tenet of literate computing:
it hinders an analyst’s ability to refine or share insights they
arrived at interactively. However, it also lowers the threshold
for engaging in iteration by shifting the process from one of
authoring and editing code to one of browsing and exploration.

Thus, the temporal gap introduced by persistence on one side
and transience on the other either limits how much an ana-
lyst might iterate, or the degree to which they capture and
share insights that result from iteration. To bridge this gap,
we need to enable users to make their exploratory iterations
in visualization persist when appropriate, and make their code
iteration more transient when appropriate. Doing so will allow
interactions performed on visualizations to serve, alongside
the code, as a reproducible log of work—this also reduces
the code versioning burden of a large trail of slightly differ-
ent cells that analysts currently generate. In the next section,
we detail the mechanisms B2 provides for crossing this gap
including capturing a snapshot of visualizations, reifying in-
teractions as a history log or a materialized data frame, and by
introducing reactive cells that automatically re-execute when
new interaction occurs.

The Layout Gap
Given their narrative roots in scientific notebooks and liter-
ate programming, notebooks naturally have a linear layout.
When visualizations are incorporated into notebooks, they are
interleaved between code cells like figures in a research paper.
While this format facilitates sharing and communicating the
logic of analytic workflows, it often puts a physical distance
between related charts, which limits an analyst’s ability to ex-
ploit visual signals that arise from multiple charts—especially
signals resulting from chart interaction.

By contrast, data dashboards offer a compact co-location of
charts on a 2-dimensional canvas. This layout enables the
dynamic, multi-view coordination across charts we see in ex-
ploratory visual analysis tools [56], where charts can be linked
so that interactions on one chart can meaningfully change the
view in others. While this is useful for short-timescale anal-

ysis, it lacks the notebook’s ability to structure and narrate a
multi-step investigation.

For the best of both worlds, we can integrate a dashboard
layout into the notebooks. Doing so, however, brings with it
several design challenges. First, a dashboard layout breaks the
formerly tight coupling between a visualization and the code
cell containing its specification: although a visualization may
be visible in the dashboard, its specification cell may have
scrolled out of view. Analysts may wish to locate these cells
in order to understand how a visualization was constructed, or
modify its design. Second, a dashboard layout has implica-
tions for the bridges we introduced to address the temporal gap.
In particular, as interactions on visualizations now occur in
the dashboard rather than as part of the linear notebook layout,
should code cells containing interaction histories be automat-
ically created or manually requested? In either case, where
should they be placed in the linear structure of the notebook to
fulfill the readability goals of literate computing, without fur-
ther contributing to the mess data scientists currently grapple
with? In the next section, we describe how B2 resolves these
tensions when bridging the layout gap.

SYSTEM DESIGN AND IMPLEMENTATION
B2 is implemented as a Jupyter notebook extension composed
of two components: (1) on the code side, a Python back-end
component that provides an instrumented data frame library,
an event-loop reacting to interactions, and an API to access
the state of the interactive visualizations current and past (2)
on the visualization side, a JavaScript front-end component
that renders visualizations, captures user selections, and gener-
ates synthesized notebook code cells corresponding to visual
interaction. In this section, we describe how the notebook and
dashboard work together to bridge the three gaps previously
described. Throughout, we refer back to Fig. 1 for illustration.

Bridging the Semantic Gap
To bridge the semantic gap between code and visualization,
we need to translate the work happening on either side to the
other. As discussed above, this work is represented in a shared
abstraction of data frame queries, which can be generated from
each side and translated across.

Code to Interactive Visualizations
B2 provides a simple Python API to generate interactive vi-
sualizations from data frame code. This API is backed by
novel techniques for auto-generating interaction logic in Vega-
Lite [48] based on the Python lineage of a data frame.

B2 delivers this API in the context of a Python data frame
library called datascience2, by adding a single method, .vis.
To minimize the activation energy of using B2 visualizations,
the .vis method does not require any parameters to work—
B2 can infer the specification for a data frame visualization
using established heuristics like column data types [9]. The
2datascience was designed for instructional purposes in large data
science courses [19]. Pandas is the most popular Python data frame
library, but it is notoriously complex, with an API that permits many
different ways to express the same logic, making operator tracking
difficult [15, 59]. To inter-operate, B2 data frames can be easily
mapped to/from pandas via df.to_pd and b.from_pd.

.vis method can be controlled directly via a set of optional
parameters based on Vega-Lite configuration specifications,
which are augmented with instrumentation from B2 for cross-
filtering. The mark [6] parameter chooses among bar charts,
scatter plots, and line charts; encoding [5] configures which col-
umn is the x-axis, y-axis, how they should be interpreted (or-
dinal, quantitative, temporal), and sorted; selection_type and
selection_dimensions [7] configure how the selection should
happen and whether the selection is the x-axis, y-axis, or both.
Any parameters that the analyst chooses to specify are locked
to their specification, the rest are inferred.

Critically, we do not ask the user to specify any interaction
logic—we infer that logic through the data lineage of the
queries. This goes beyond traditional visualization inference
techniques like ShowMe [9] that only apply to static charts.
Consider the scatter plot of the fire Size and Time (Listing 1,
Line 2) 7 , and the bar chart of the distribution of fires by their
Cause (Line 3) 9 . Because both dataframes derive from the
same parent, fires_df, B2 infers that they should be linked.
As a result, a brush selection on the scatter plot cross-filters
the bar chart by overlaying a second bar chart on the first. This
overlay is defined by a new, automatically-generated query
that first filters the rows of fires whose Time and Size is in
the selected region (Line 5), then re-applies the grouping on
Causes (Line 6) to the filtered base data frame. This query is
derived by tracing the operators used to derive each data frame,
and then applying the selections to the base data frames of
the "source" data frame, then replacing the filtered data frame
with the base of the "target" data frame.3

1 # given
2 size_time_df = fires_df.select[’size’, ’time’]
3 cause_df = fires_df.group(’cause’, count)
4 # derived
5 filtered_df = fires_df.where(lambda r: r.size <

max_size and r.time < max_time)
6 cause_df_filtered = filtered_df.group(’cause’,

count)

Listing 1. Example queries and automatically synthesized interactions.

Visual Interactions to Code
B2’s chart interactions are expressed as selections of data. We
want to enable users to use chart interactions for easy, familiar
tasks, and fluidly reify selections into code so they can bring
them back into the customizable logic of the notebook pane.
To illustrate, we work through a scenario in which an analyst
identifies an interesting area in the scatter plot of the fire size
and time of the fire in 7 , and brushes to highlight the area.
The brush specifies a selection bounding the size and time of
the fires. This selection can be accessed in three different ways
that exercise different features of B2.

Data. After brushing, the analyst sees a filtered chart contain-
ing an interesting distribution of fire causes. They wish to
directly access the data of the filtered chart to evaluate custom
functions using the data — for example, to join with data of
state population and compute the correlation or customize the

3Technical details that describe the scope of the inference, methods
and algorithms are discussed in the supplementary materials.

visualization in another library/tool. The data in the current se-
lection is accessed through the get_filtered_data API, which
returns a standard dataframe object.

Code. The analyst also wishes to access the code that derives
the data of the state histogram to (1) run the code on a different
dataset with the same schema, (2) share or record the code so
the result can be reproduced directly, or compared with other
analysis. This code can be accessed through the get_code API,
as well as the Copy Code to Clipboard dashboard button 11 .

Predicates. The analyst realizes that they also want to access
selections that occurred previously. The all_selections API
returns the full history of selections as a list of B2 objects,
and a corresponding API returns the current_selection. These
B2 objects can be reused using additional API calls that give
access to either a data frame or code representation.

1 # predicates
2 b2.current_selection
3 b2.all_selections
4 # data from the current selection
5 df.get_filtered_data()
6 # code from the current selection
7 df.get_code()

Listing 2. B2 APIs, from interactive visualization to code

Bridging the Layout Gap
The goal of the B2 dashboard pane is to allow visualizations
that correspond to many, possibly distant notebook cells on
the left to be co-located spatially on the right. Hence the
dashboard pane is a 2D canvas that scrolls independently of
the notebook pane. Users are given affordances to control the
position of charts within the dashboard.

To bridge the layout gap between notebook and dashboard
metaphors, we have to consider both how notebook features
map into the dashboard, and how dashboard interactions are
reified back into the sequential layout of the notebook.

From Notebook to Dashboard
Invoking the Python vis API of B2 causes a visualization to
be generated, which needs to be placed in the 2D canvas of
the dashboard. Given the layout flexibility of the dashboard
and the goal of allowing users to colocate charts, we simply
append new visualizations to the bottom right of the current
dashboard pane, and scroll the pane to the new chart. Users
can then reposition the visualization via a menu on the chart.

From Dashboard to Notebook
To make an interaction persistent, we need to place its reified
code into a notebook cell, which requires choosing a location
in the sequential layout of the notebook. One option is to paste
the code into whatever cell currently contains the Juypter
notebook cursor. We ruled out this choice after pilot tests
showed that analysts are often not aware of where the cursor
is. We also considered always placing selections at the end
of the notebook, or even all in one dedicated cell, but in that
design interactions are separated the flow of work, conflicting
with our goal of “closing the loop” and integrate coding with
visual exploring in a single flow of work.

Figure 6. A demonstration of three designs of selection cells. The top
four cells represent the result of creating new cells every time there is an
interaction. The second last cell represents all four selections, with three
commented out. The last cell represents the previous cell folded, and is
the design we finalized on for B2.

We ended on a design that seemed intuitive to pilot users:
placing generated code cell after the most recently executed
cell. To cue the user as to where new cells will be placed, we
maintain a horizontal blue bar in the notebook under the most
recently executed cell.

Beyond the initial code placement, users need long-term af-
fordances to investigate the connection between charts on the
right and cells on the left. To see the connection between
a visualization and the cell where it was specified, analysts
can click on the button, "find defining cell", in a drop-down
menu 11 , and the notebook will navigate to the cell where the
visualization call vis is invoked.

Bridging the Temporal Gap
The temporal gap between notebooks and interactive visu-
alizations require introducing persistence to interaction, and
allowing code cells to respond interactively to user input. We
describe how we support these in turn.

Bringing Persistence to Interaction
The ability to reify interactions into code allows users to persist
their interactions. This can substantively change the user
experience of interactive visualization, integrating it into the
longer-term, narrative metaphor of a computational notebook.

However, not every real-time data exploration gesture merits
being solemnized in the narrative of a notebook. If we record
every transient visual state, it would bloat the notebook signif-
icantly. Instead, we record the minimum amount of code to
specify interactive visualization states. For interactions with
the data pane, we create a column distribution cell that con-
tains the logic of grouping and visualizing the values (e.g., 4).
For selections on the visualizations, we create a selection cell
that contains the predicates of the current selections (e.g., 10).
The automatically injected cells allow analysts to reference
and replay previous interactions directly in the notebook.

The rest of the visualization state can be "pulled" explicitly
into the notebook narrative at relevant times by clicking on
snapshot , which captures an SVG representation of the state
of all visible visualizations in a notebook cell and the code to
derive the data for the respective visualizations in comments.

However, even just with the selection specifications in the
reified cell, their accumulation could still produce clutter. To
further reduce clutter, if multiple selections are made without
the analyst switching to the notebook pane, all their reifications
are merged into a single cell, with the code for all but the
last selection commented out and folded (with a code_mirror
API), as shown in Fig. 6. This way, the default space devoted
to each interaction “session” in the notebook is small and
constant, but the history is easily accessed by code unfolding
for replay, copy-paste, and other purposes. If analysts still find
the injected cells disruptive to their notebook flow, they can
toggle the hiding of all generated cells with the Toggle 11 .

Bringing Interactivity to Code Cells
To introduce interactivity into the notebook, B2 implements
reactive cells. These are in some sense the mirror image
of reified cells—instead of persisting interactive events, they
make the (persistent) code cells interactive. With reactive
cells, analysts can create their own custom interactions using
a visualization package of their choosing, expanding the ex-
pressiveness of the default interactive visualizations. A cell
is made reactive by simply prefixing its code with a Jupyter
“magic” command, %%reactive. B2 ensures that the notebook’s
JS component executes the cell after every visual selection.
If the magic command has a -df <variable> flag, it executes
after the visualization that is named after the variable in the
flag (e.g., "STATE_fires_df_dist" in 4 and 5). In every other
way, reactive cells are regular notebook cells—for example,
they can be moved and deleted.

EVALUATION: FIRST-USE STUDY
To evaluate the usability of B2’s bridges, we conducted a
first-use study with 7 representative users4, including 6 col-
lege students who have taken an upper-division data science
course, and 1 data scientist from industry. All participants
had experience using Jupyter notebooks and dataframes, and
their average self-reported data science expertise was 3.7 on
a 5-point Likert scale (σ = 0.6). Participants also reported
regularly using static visualizations for their day-to-day anal-
ysis (µ = 4.2,σ = 0.7), and only sometimes use interactive
visualizations (µ = 2.9,σ = 1.0).

Methods
Due to the COVID-19 “shelter-in-place” order, we conducted
the studies over video conference using a hosted Jupyter Note-
book. We began each study with a 30-minute tutorial of B2’s
features, and then asked participants to complete three data
analysis tasks. The tasks used an open dataset of logged calls
to the local police department [44], which we chose to be
interesting to participant. Tasks began specifically-focused
and then transitioned to being more open-ended: (1a) identify
the top two types of offenses on the weekend; (1b) verify that
the result from the previous task holds on another dataset; (2a)
identify how the locations of calls skew based on different
factors; (2b) note factors you have not looked at; (3) explore
the data further and share observations and recommendations
for the police department. We asked the participants to record
their findings in markdown cells and to think aloud.
4COVID-19 affected our ability to broadly recruit participants.

Participants took 45–60 minutes to complete the three tasks.
At the conclusion of the study, we administered an exit survey
to measure the usefulness of B2 features, and to debrief partic-
ipants about their experiences. Participants were compensated
with $30 Amazon gift cards.

Quantitative Results
We instrumented the Jupyter notebook to log all user interac-
tions with elements of the notebook and dashboard, including
B2 API invocations, interactive selections on the visualiza-
tions, clicks on the column pane, and clicks on the drop-down
menus of individual visualizations. To analyze this data, we
computed the count of logged entry by type, and report the
average and standard deviation across participants.

Crossing the Semantic Gap: On average, participants clicked
columns from the dashboard listing 17 times (σ = 4.4), and
selected marks in the visualizations 63 times (σ = 41.9). Par-
ticipants manually invoked the B2 APIs (Listing 2) in code
an average of 26.7 times (σ = 21.9); this number rises to an
average of 112 times (σ = 84.8) when we include automatic
invocations as a result of reactive cells.

Crossing the Layout Gap: Participants controlled the dash-
board (e.g., adjusting its size, hiding or (re)moving visualiza-
tions, etc.) an average of 12.6 times (σ = 5.3), and scrolled to
navigate the notebook’s linear flow an average of 536 times
(σ = 140.7). To navigate from the dashboard to the notebook,
participants clicked the Find Defining Cell button an average
of 2.2 times (σ = 1.9) and none of the participants used B2’s
functionalities to navigate from the notebook to the dashboard.

Crossing the Temporal Gap: On average, participants recorded
transient interactive visualizations to the notebook using snap-
shots 3.7 times (σ = 2.9), and made cells interactive with the
%%reactive magic command 4.43 times (σ = 2.94).

Post-study survey results
On 5-point Likert scales, participants positively rated B2 over-
all (µ = 3.7,σ = 0.6), with similar ratings for interactive
visualization (µ = 4.2,σ = 0.75), static visualization (µ =
3.7,σ = 0.9), B2’s programmatic API (µ = 3.6,σ = 0.7), and
interaction histories (µ = 3.5,σ = 0.92). In terms of ease-of-
use, participants rated B2 a 3.1 (σ = 0.3), but responded that
they were likely to use B2 in the future (µ = 3.6,σ = 0.8).

Qualitative Results
We observed participants quickly grasped how to use code
and interactions together in a complementary fashion. One
common pattern was using code to first process data before
visualizing it. For instance, P2 first attempted to visualize
the time column by clicking on the pane, but B2 flagged that
there were too many unique values and it would not be able
to synthesize the code to visualize the data. In response, P2
switched to the notebook and inspected the values in the Time
column with code. They then extract out the Hour from the
Time column with a regex function and visualized the dis-
tribution by Hour using the .vis API. Having built the hour
distribution visualization, P2 then interacted with it by brush-
ing time ranges to further filter other visualizations. Another
common pattern was using code to compute statistics using

Figure 7. Participants’ interaction traces while working on task 3, an open-ended task to model the dataset. Each participant’s activity is represented
by a horizontal strip plot, with participants arrayed down the visualization. Orange colors represents the work done in the code domain, and the blue
colors represent the work done in the interactive visualization domain.

the interactively filtered visualizations. For instance, using
Copy Code to Clipboard , P3 copied the code used to derive
an interactive visualization and added their own functions to
compute the average values (Fig. 8). Similarly, P7 was in-
spired by B2’s visualization, and wrote their own visualization
in matplotlib using the data frame B2 reified in the previous
code cell, before then computing statistics in code (Fig. 9).

These types of patterns switching between code and interactive
visualization, and vice-versa, were common across all partici-
pants. Fig. 7 visualizes the interaction traces of participants in
task 3, and we can see frequent interleavings between coding
and interacting with the visualizations for all participants and
throughout the duration of this open-ended task. Indeed, in the
post-study debrief, participants shared enthusiastic comments
about B2’s features. For instance, P5 wanted them to be able
to "create custom visualizations for their day to day work"
while P6 wanted them in order to "share the raw underlying
data of a chart [with coworkers]".

When working on task 2, which prompted exploration of call
location, all but one participant chose to use interactive visu-
alizations. In particular, these participants chose to create an
initial heatmap, make it reactive using B2’s %%reactive magic
command, and then select different values in the dashboard
histograms. In contrast, P7 primarily used code to re-derive
the Lat Lon information. P7’s manual iteration was slower
and resulted in fewer insights in the time given (Fig. 10). In
either case, participants frequently needed to refer to documen-
tation, even when using popular libraries such as numpy and
matplotlib. This need to consult resources outside of the note-
book appeared to impose a high cost, and several participants
interacted with the dataset using B2’s visualizations before
committing to using extensive coding to answer the task. For
instance, when thinking out loud, P5 shared that "I need to dig
into this [with code] but maybe later".

The fact that the interactive visualizations were automatically
synthesized proved to be important. P1 commented that the
features offered by B2 are "hard to do [for them] with plotting

Figure 8. Modifying a generated query to further derive the average
count, which is not possible through interactions.

libraries". P5 said that B2 "spares the user from tedious
commands" and "facilitates the EDA process". This ease of
use also prompted comments about targeting B2 at those less
familiar with code. P7 said B2 "engages people who would
like to conduct research and data analysis but don’t have much
programming experience", and P2 said "I think this would be
awesome to show students in my data science class".

There was also evidence that incorporating interactions into
the programming process may require a mental shift. We ob-
served this shift in thinking most saliently in how participants
chose to complete Task 1b. To verify if the answer to task
1a holds true for a different dataset with the same schema,
five analysts exported their interactive work to code using the
Copy Code to Clipboard . With this code, they replaced the
data frame from task 1a with the new dataframe loaded in
1b, executed the query and evaluated the results in code. The
other 2 analysts manually re-applied the interactions from the
Task 1a on the new dataset and were not aware of using B2’s
capability to translate interaction results to code.

When asked in the exit interview about their approach, they
commented that the alternative approach of mapping interac-
tions to code hadn’t crossed their minds. In other words, the
first approach requires that the analyst understands how B2
let them work across the two mediums, and it seems from
the results that it’s not always apparent. P4 said "It might be
because I am not very familiar with the idea of interactive vi-
sualizations, I find it not so easy to adapt to the tools given my
background". Further study is required to determine whether
this mental shift will be ameliorated with increased and longer-
term exposure to interactive visualizations and exploratory
visual analysis, or whether it represents a more fundamen-
tal overhead of switching between these two paradigms that
future versions of B2 can address.

Figure 9. Using code to create a custom plot with the average line in the
chart, and computing percentages.

Figure 10. Participants’ interaction traces while working on task 2. To
plot the heatmap, all analysts initially interleaved between code and
interactions. P3’s gap between 300–400s is when they searched the
web for information about the city. P7 used code, interaction, and the
get_filtered_data API to inspect whether null values were present.

Participants had more mixed opinions about the auto-injected
reified selection cells. For instance, P2 mentioned that they
could "make the notebook very crowded" and suggested that
we "have it appear in some separate tab"; P3 mentioned that
it was "annoying that the left side gets populated by lines
of code each time I click on the visualization on the right".
However, the most experienced data analyst (with years of
industry experience), appreciated the feature, saying "being
able to remember the current selection and history" is impor-
tant "because I often forget what I’ve done if I go get coffee
or lunch", and that the feature may help with reproducing the
analysis ("I often have one team reach out to get a version of
an analysis that I did for another team").

Interestingly, although B2 does provide a feature to combat
this issue (the Toggle button), neither P2 or P3 made use of
it. They explained that they forgot the toggle control feature.
Perhaps the issue could be addressed by more use with the
tool. It could also be that, fundamentally, some analysts do
not like their notebook to be modified. Regardless, this initial
finding speaks to well-known explanation-exploration conflict
in notebook exploration [47] and we need to study further to
understand the design and cognitive issues present.

CONCLUSION
We contribute B2, a library of techniques to bridge the gaps
between code and interactive visualizations in computational
notebooks. We identified these gaps by studying prior work
that surveyed and interviewed data scientists, and then evolved
our understanding based on the tradeoffs manifest in prototype
implementations we piloted with representative users. These
gaps — and the way they arise from the metaphors, layouts,
and timescales of the two styles of work — are a significant
influence on the specific bridges we ultimately chose to in-
stantiate in B2. Our first-use study validates that these bridges
indeed help users iterate between code and interactive visual-
ization more seamlessly.

Having addressed this first set of questions, we have uncovered
a number of additional challenges that appear to be rich topics
for further investigation.

Non-Linear Workflows & Asynchronous Collaborations:
Our user studies yielded relatively short sessions, but notebook
explorations could often become non-linear, where analysts

may want to jump between sections of analysis. These jumps
cause changes in context, both in terms of the program state
and analysts’ mental models. The challenge of managing seg-
ments of analysis state is also faced in collaboration settings,
where analysts sometimes jump through cells and need to
understand cell dependencies [55]. Supporting analysts in nav-
igating between segments of analysis in space and time poses
additional challenges for the layout and temporal gaps. Future
work could explore bringing in techniques such as bookmark-
ing, linking, and annotations from asynchronous collaboration
literature [30]. For instance, we could consider bookmarks
containing groups of visualizations that match sections of the
notebook that may correspond to a set of visualizations. We
could also link the states of charts and data frames—when a
data frame is modified, the charts reactively update in accord.

DSLs Beyond the Data Frame: A data frame API is an at-
tractive semantic foundation for bridging visualization and
code, because (a) it is broadly useful across many classes of
data (tables, matrices) and analysis steps (data preparation,
database-style queries, linear algebra), and (b) it maps well to
the core visual aspects of EDA. However there are other data
science microcosms where it might be interesting to bridge
code and data. One popular example today is deep learn-
ing, where APIs like Keras [22] or Tensorflow [10] are often
coupled with domain-specific charting packages like Tensor-
board [8]. How might a different set of data frame operations
and visualizations impact the gaps we identify in this paper,
and might they suggest new gaps and bridges?

Links Beyond Cross-Filter: In this paper, we focus on syn-
thesizing cross-filters as our main interactive mechanism, but
there are many other possible techniques to consider. For in-
stance, Yi, et al. present one taxonomy of this space, with
seven different categories of interaction techniques [62] cover-
ing dozens of ideas in prior work. For many of these, it would
be interesting to consider how data properties and operation
lineage could aid in automatic synthesis of useful interactions.
As a more general question, if we expand B2 to accommodate
many different interaction models, how might we prioritize
automatic selection of the most appropriate model, or design
semi-automatic interfaces for interaction model selection?

B2 is available as open-source software at https://github.com/
ucbrise/b2.

ACKNOWLEDGEMENTS
Thanks to Eugene Wu and Remco Chang for early discussions,
Ryan Purpura for programming contributions, Brian Hempel
and Andrew Head for helpful algorithmic and design advice,
Anna Papitto for editing help, and the anonymous reviewers
for their constructive comments. This work was supported
by NSF No. 1564351, 1900991 and 1942659, and DOE No.
DE-SC0016934.

REFERENCES
[1] 2019. bloomberg. (2019).

https://github.com/bloomberg/bqplot

[2] 2019. The fastest way to build custom ML tools. (2019).
https://streamlit.io/

https://github.com/ucbrise/b2
https://github.com/ucbrise/b2
https://github.com/bloomberg/bqplot
https://streamlit.io/

[3] 2019. How to use interactive IPython widgets to
enhance data exploration and analysis. (2019).
https://towardsdatascience.com/interactive-controls-

for-jupyter-notebooks-f5c94829aee6

[4] 2019. Observable. (2019). https://observablehq.com/

[5] 2019a. Vega-Lite Axis. (2019).
https://vega.github.io/vega-lite/docs/axis.html

[6] 2019b. Vega-Lite Mark. (2019).
https://vega.github.io/vega-lite/docs/mark.html

[7] 2019c. Vega-Lite Selection. (2019).
https://vega.github.io/vega-lite/docs/selection.html

[8] 2020. TensorBoard: TensorFlow’s visualization toolkit.
(2020). https://www.tensorflow.org/tensorboard

[9] 2020. Use Show Me to Start a View. (2020).
https://help.tableau.com/current/pro/desktop/en-us/

buildauto_showme.htm

[10] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard, and
others. 2016. Tensorflow: A system for large-scale
machine learning. In 12th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI}
16). 265–283.

[11] Eytan Adar. 2006. GUESS: a language and interface for
graph exploration. In Proceedings of the SIGCHI
conference on Human Factors in computing systems.
791–800.

[12] Sara Alspaugh, Nava Zokaei, Andrea Liu, Cindy Jin,
and Marti A Hearst. 2018. Futzing and moseying:
Interviews with professional data analysts on exploration
practices. IEEE transactions on visualization and
computer graphics 25, 1 (2018), 22–31.

[13] Shaon Barman, Sarah Chasins, Rastislav Bodik, and
Sumit Gulwani. 2016. Ringer: web automation by
demonstration. In Proceedings of the 2016 ACM
SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications.
748–764.

[14] Andrea Batch and Niklas Elmqvist. 2017. The
interactive visualization gap in initial exploratory data
analysis. IEEE transactions on visualization and
computer graphics 24, 1 (2017), 278–287.

[15] Rohan Bavishi, Caroline Lemieux, Roy Fox, Koushik
Sen, and Ion Stoica. 2019. AutoPandas: neural-backed
generators for program synthesis. Proceedings of the
ACM on Programming Languages 3, OOPSLA (2019),
1–27.

[16] Sarah Chasins, Shaon Barman, Rastislav Bodik, and
Sumit Gulwani. 2015. Browser record and replay as a
building block for end-user web automation tools. In
Proceedings of the 24th International Conference on
World Wide Web. 179–182.

[17] Souti Chattopadhyay, Ishita Prasad, Austin Z Henley,
Anita Sarma, and Titus Barik. 2020. What’s Wrong with
Computational Notebooks? Pain Points, Needs, and
Design Opportunities. (2020).

[18] Ravi Chugh, Brian Hempel, Mitchell Spradlin, and
Jacob Albers. 2016. Programmatic and direct
manipulation, together at last. ACM SIGPLAN Notices
51, 6 (2016), 341–354.

[19] John DeNero, David Culler, Sam Lau, and Alvin Wan.
2015. A Berkeley library for introductory data science.
(2015). https://github.com/data-8/datascience/

[20] Ian Drosos, Titus Barik, Philip J Guo, Robert DeLine,
and Sumit Gulwani. 2020. Wrex: A Unified
Programming-by-Example Interaction for Synthesizing
Readable Code for Data Scientists. In Proceedings of the
2020 CHI Conference on Human Factors in Computing
Systems. ACM.

[21] Garrett Grolemund. 2014. Introduction to interactive
documents. (July 2014). https:
//shiny.rstudio.com/articles/interactive-docs.html

[22] Antonio Gulli and Sujit Pal. 2017. Deep learning with
Keras. Packt Publishing Ltd.

[23] Sumit Gulwani. 2011. Automating string processing in
spreadsheets using input-output examples. ACM Sigplan
Notices 46, 1 (2011), 317–330.

[24] Sumit Gulwani, William R Harris, and Rishabh Singh.
2012. Spreadsheet data manipulation using examples.
Commun. ACM 55, 8 (2012), 97–105.

[25] Philip J Guo, Sean Kandel, Joseph M Hellerstein, and
Jeffrey Heer. 2011. Proactive wrangling:
Mixed-initiative end-user programming of data
transformation scripts. In Proceedings of the 24th
annual ACM symposium on User interface software and
technology. 65–74.

[26] Björn Hartmann, Loren Yu, Abel Allison, Yeonsoo
Yang, and Scott R Klemmer. 2008. Design as
exploration: creating interface alternatives through
parallel authoring and runtime tuning. In Proceedings of
the 21st annual ACM symposium on User interface
software and technology. 91–100.

[27] Andrew Head, Fred Hohman, Titus Barik, Steven M
Drucker, and Robert DeLine. 2019. Managing Messes in
Computational Notebooks. In Proceedings of the 2019
CHI Conference on Human Factors in Computing
Systems. ACM, 270.

[28] Jeffrey Heer, Maneesh Agrawala, and Wesley Willett.
2008. Generalized selection via interactive query
relaxation. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. 959–968.

[29] Jeffrey Heer and Ben Shneiderman. 2012. Interactive
dynamics for visual analysis. Queue 10, 2 (2012),
30–55.

https://towardsdatascience.com/interactive-controls-for-jupyter-notebooks-f5c94829aee6
https://towardsdatascience.com/interactive-controls-for-jupyter-notebooks-f5c94829aee6
https://observablehq.com/
https://vega.github.io/vega-lite/docs/axis.html
https://vega.github.io/vega-lite/docs/mark.html
https://vega.github.io/vega-lite/docs/selection.html
https://www.tensorflow.org/tensorboard
https://help.tableau.com/current/pro/desktop/en-us/buildauto_showme.htm
https://help.tableau.com/current/pro/desktop/en-us/buildauto_showme.htm
https://github.com/data-8/datascience/
https://shiny.rstudio.com/articles/interactive-docs.html
https://shiny.rstudio.com/articles/interactive-docs.html

[30] Jeffrey Heer, Fernanda B Viégas, and Martin
Wattenberg. 2007. Voyagers and voyeurs: supporting
asynchronous collaborative information visualization. In
Proceedings of the SIGCHI conference on Human
factors in computing systems. 1029–1038.

[31] Brian Hempel and Ravi Chugh. 2016. Semi-automated
svg programming via direct manipulation. In
Proceedings of the 29th Annual Symposium on User
Interface Software and Technology. 379–390.

[32] Brian Hempel, Justin Lubin, and Ravi Chugh. 2019.
Sketch-n-Sketch: Output-Directed Programming for
SVG. In Proceedings of the 32nd Annual ACM
Symposium on User Interface Software and Technology.
ACM, 281–292.

[33] Jupyter. 2019. Using Interact. (2019).
https://ipywidgets.readthedocs.io/en/stable/examples/

Using%20Interact.html

[34] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and
Jeffrey Heer. 2011. Wrangler: Interactive visual
specification of data transformation scripts. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. 3363–3372.

[35] Mary Beth Kery, Amber Horvath, and Brad A Myers.
2017. Variolite: Supporting Exploratory Programming
by Data Scientists.. In CHI. 1265–1276.

[36] Mary Beth Kery, Bonnie E John, Patrick O’Flaherty,
Amber Horvath, and Brad A Myers. 2019. Towards
Effective Foraging by Data Scientists to Find Past
Analysis Choices. In Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems.
ACM, 92.

[37] Mary Beth Kery, Marissa Radensky, Mahima Arya,
Bonnie E John, and Brad A Myers. 2018. The story in
the notebook: Exploratory data science using a literate
programming tool. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems.
ACM, 174.

[38] Mary Beth Kery, Kanit Wongsuphasawat, Kayur Patel,
Donghao Ren, and Fred Hohman. 2020. The Future of
Notebook Programming Is Fluid. In CHI.

[39] Donald Ervin Knuth. 1984. Literate programming.
Comput. J. 27, 2 (1984), 97–111.

[40] Semi Koen. 2019. Bring your Jupyter Notebook to life
with interactive widgets. (2019). https:
//towardsdatascience.com/bring-your-jupyter-notebook-

to-life-with-interactive-widgets-bc12e03f0916

[41] Samuel Lau and Joshua Hug. 2018. nbinteract: generate
interactive web pages from Jupyter notebooks. Ph.D.
Dissertation. Master’s thesis, EECS Department,
University of California, Berkeley.

[42] Miron Livny, Raghu Ramakrishnan, Kevin Beyer,
Guangshun Chen, Donko Donjerkovic, Shilpa Lawande,
Jussi Myllymaki, and Kent Wenger. 1997. DEVise:
integrated querying and visual exploration of large
datasets. ACM SIGMOD Record 26, 2 (1997), 301–312.

[43] Andreas Mathisen, Tom Horak, Clemens Nylandsted
Klokmose, Kaj Grønbæk, and Niklas Elmqvist. 2019.
InsideInsights: Integrating Data-Driven Reporting in
Collaborative Visual Analytics. In Computer Graphics
Forum.

[44] Berkeley PD. 2020. Calls for Service. (2020).
https://data.cityofberkeley.info/Public-Safety/

Berkeley-PD-Calls-for-Service/k2nh-s5h5

[45] Fernando Pérez. 2013. “Literate computing” and
computational reproducibility: IPython in the age of
data-driven journalism. (2013). http://blog.fperez.org/
2013/04/literate-computing-and-computational.html

[46] Adam Rule, Ian Drosos, Aurélien Tabard, and James D
Hollan. 2018a. Aiding collaborative reuse of
computational notebooks with annotated cell folding.
Proceedings of the ACM on Human-Computer
Interaction 2, CSCW (2018), 1–12.

[47] Adam Rule, Aurélien Tabard, and James D Hollan.
2018b. Exploration and explanation in computational
notebooks. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems. ACM, 32.

[48] Arvind Satyanarayan, Dominik Moritz, Kanit
Wongsuphasawat, and Jeffrey Heer. 2016. Vega-lite: A
grammar of interactive graphics. IEEE transactions on
visualization and computer graphics 23, 1 (2016),
341–350.

[49] Chris Stolte, Diane Tang, and Pat Hanrahan. 2002.
Polaris: A system for query, analysis, and visualization
of multidimensional relational databases. IEEE
Transactions on Visualization and Computer Graphics 8,
1 (2002), 52–65.

[50] Matúš Sulír, Michaela Bačíková, Sergej Chodarev, and
Jaroslav Porubän. 2018. Visual augmentation of source
code editors: A systematic mapping study. Journal of
Visual Languages & Computing 49 (2018), 46–59.

[51] John W Tukey. 1977. Exploratory data analysis. Vol. 2.
Reading, Mass.

[52] Bret Victor. 2011. Explorable Explanations. (March
2011). http://worrydream.com/ExplorableExplanations/

[53] Bret Victor. 2012a. Inventing on Principle. (January
2012). http://worrydream.com/#!/InventingOnPrinciple

[54] Bret Victor. 2012b. Learnable Programming. (September
2012). http://worrydream.com/LearnableProgramming/

[55] April Yi Wang, Anant Mittal, Christopher Brooks, and
Steve Oney. 2019. How data scientists use
computational notebooks for real-time collaboration.
Proceedings of the ACM on Human-Computer
Interaction 3, CSCW (2019), 1–30.

[56] Michelle Q Wang Baldonado, Allison Woodruff, and
Allan Kuchinsky. 2000. Guidelines for using multiple
views in information visualization. In Proceedings of the
working conference on Advanced visual interfaces.
110–119.

https://ipywidgets.readthedocs.io/en/stable/examples/Using%20Interact.html
https://ipywidgets.readthedocs.io/en/stable/examples/Using%20Interact.html
https://towardsdatascience.com/bring-your-jupyter-notebook-to-life-with-interactive-widgets-bc12e03f0916
https://towardsdatascience.com/bring-your-jupyter-notebook-to-life-with-interactive-widgets-bc12e03f0916
https://towardsdatascience.com/bring-your-jupyter-notebook-to-life-with-interactive-widgets-bc12e03f0916
https://data.cityofberkeley.info/Public-Safety/Berkeley-PD-Calls-for-Service/k2nh-s5h5
https://data.cityofberkeley.info/Public-Safety/Berkeley-PD-Calls-for-Service/k2nh-s5h5
http://blog.fperez.org/2013/04/literate-computing-and-computational.html
http://blog.fperez.org/2013/04/literate-computing-and-computational.html
http://worrydream.com/ExplorableExplanations/
http://worrydream.com/#!/InventingOnPrinciple
http://worrydream.com/LearnableProgramming/

[57] Kanit Wongsuphasawat, Yang Liu, and Jeffrey Heer.
2019. Goals, Process, and Challenges of Exploratory
Data Analysis: An Interview Study. arXiv preprint
arXiv:1911.00568 (2019).

[58] Jo Wood, Alexander Kachkaev, and Jason Dykes. 2018.
Design exposition with literate visualization. IEEE
transactions on visualization and computer graphics 25,
1 (2018), 759–768.

[59] Yifan Wu. 2020. Is a Dataframe Just a Table?. In 10th
Workshop on Evaluation and Usability of Programming
Languages and Tools (PLATEAU 2019). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik.

[60] Yifan Wu, Remco Chang, Eugene Wu, and Joseph M
Hellerstein. 2019. DIEL: Transparent Scaling for

Interactive Visualization. arXiv preprint
arXiv:1907.00062 (2019).

[61] Kuat Yessenov, Shubham Tulsiani, Aditya Menon,
Robert C Miller, Sumit Gulwani, Butler Lampson, and
Adam Kalai. 2013. A colorful approach to text
processing by example. In Proceedings of the 26th
annual ACM symposium on User interface software and
technology. 495–504.

[62] Ji Soo Yi, Youn ah Kang, and John Stasko. 2007.
Toward a deeper understanding of the role of interaction
in information visualization. IEEE transactions on
visualization and computer graphics 13, 6 (2007),
1224–1231.

	Introduction
	A Demo of B2
	Related Work
	Interactions Parameterizing Code
	Interactions Generating Code
	The Needs of Data Scientists

	The Gaps Between Code and Interactions
	The Semantic Gap
	The Temporal Gap
	The Layout Gap

	System Design and Implementation
	Bridging the Semantic Gap
	Code to Interactive Visualizations
	Visual Interactions to Code

	Bridging the Layout Gap
	From Notebook to Dashboard
	From Dashboard to Notebook

	Bridging the Temporal Gap
	Bringing Persistence to Interaction
	Bringing Interactivity to Code Cells

	Evaluation: First-Use Study
	Methods
	Quantitative Results
	Post-study survey results

	Qualitative Results

	Conclusion
	Acknowledgements
	References

