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ABSTRACT
Programmers must draw explicit connections between their
code and runtime state to properly assess the correctness of
their programs. However, debugging tools often decouple
the program state from the source code and require explic-
itly invoked views to bridge the rift between program editing
and program understanding. To unobtrusively reveal runtime
behavior during both normal execution and debugging, we
contribute techniques for visualizing program variables di-
rectly within the source code. We describe a design space and
placement criteria for embedded visualizations. We evaluate
our in situ visualizations in an editor for the Vega visualization
grammar. Compared to a baseline development environment,
novice Vega users improve their overall task grade by about 2
points when using the in situ visualizations and exhibit signifi-
cant positive effects on their self-reported speed and accuracy.
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INTRODUCTION
Programmers perform a variety of high-level tasks during the
software development process, including authoring, testing, de-
bugging, and reviewing code [22]. Many popular development
environments include specialized tools to support these tasks.
For example, techniques such as logging, replay [5, 18, 28],
and breakpointing interactively surface the internal state of
the program, and are used to pinpoint specific lines of code
responsible for the runtime behavior.

However, these existing techniques must be explicitly invoked
and are presented to programmers in separate, coordinated
views. Studies have shown that switching between these views
imposes a burden on developers, making it difficult for them
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Figure 1. Code augmentations visualize the runtime state of program
variables in a Vega [32] specification. A histogram shows the distribution
of variables containing set data. Interacting with the year histogram fil-
ters all other histograms to only show the data values where the year is
between 1995 and 2002 (hand cursor shown here for clarity; in a real im-
plementation the cursor is hidden mid-interaction to aid chart reading).
For mouseover_year, a tick visualization depicts value changes.

to maintain a clear picture of the overall context of the runtime
behavior [22, 27, 29, 31]. This separation is particularly prob-
lematic when programmers are immersed within a particular
task — they may overlook details that would be obvious with
an alternative view [31]. Expectations about the desired be-
havior may additionally cause programmers to overlook errors
when the behavior diverges from expectation.

We hypothesize that automatically surfacing contextually rel-
evant information directly within a code editor can help pro-
grammers better understand runtime behavior. We contribute
in situ visualizations of program behavior intended to narrow
the gulf of evaluation for software development tasks. We
present a design space of embedded visualizations for interac-
tive applications that visualize time-varying variables. Snap-
shots of the program state highlight the exact value of scalar
variables, or the underlying distributions of set variables. We
further contribute criteria for the placement of code augmen-
tations based on trade-off metrics. Interactive visualizations
of the program state can enable richer interactions within the
development environment and present runtime information as
a first-class component of the code authoring process.

We evaluate our in situ visualizations in an editor for the Vega
visualization grammar [32]. In an evaluation with 18 novice
Vega users, we found that participants improved their overall
task grade by about 2 points when using the in situ visual-
izations. When reflecting on their experience, participants
showed significant positive effects on their self-reported speed
and accuracy. Participants found the visualizations particularly
useful for understanding the dynamic behavior of the code.
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RELATED WORK
This research is motivated by three areas of related work:
empirical studies of programmers, program visualization and
debugging, and text and environment augmentation.

Empirical Studies of Programmers
Many debugging tools utilize separate coordinated views,
which require programmers to intentionally switch between
code authoring and debugging tasks. However, this required
shift of the programmer’s focus can incur a high context
switching cost and interrupt the programmer’s flow.

Flow [27] is a well-studied topic from the field of psychology
and describes the state in which an individual “operates at full
capacity.” While “in flow,” programmers may introduce but
overlook errors in their code. Saff & Ernst [31] describe a
model of developer behavior where the phase in which pro-
grammers have unknowingly introduced an error is called “ig-
norance.” Across two development projects, Saff & Ernst [31]
found that Java programmers were ignorant of program errors
for about 17 minutes on average (and sometimes more than
90 minutes). Identifying these errors requires programmers
to switch from code authoring to debugging; Ko et al. [22]
found that programmers spend 5% of their development time
switching between tasks on average. We hypothesize that by
visualizing program state in situ, programmers will be more
aware of the impact of code changes and thus reduce the time
spent ignorant of errors or switching between tasks.

Once an error has been introduced, programmers must invest
time to find and fix the error. Ko et al. [21] found that program-
mers spend 46% of their time debugging. Saff & Ernst [31]
found a significant relationship between the “ignorance time”
of an error and the amount of time needed to fix it. Parnin &
Rugaber [29] studied the time required to resume program-
ming after an interruption and found that 30% of programming
sessions had a lag of over thirty minutes between entering the
session and authoring new code, potentially as a result of ex-
tensive debugging tasks. By surfacing program state earlier
in the process via in situ visualization, we hope to reduce the
time span between introducing and fixing errors.

Program Visualization and Debugging
Program visualization can facilitate both educational and de-
bugging tasks. The Online Python Tutor [14] visualizes ob-
jects, variables, and stack frames allowing students to inspect
the runtime state of their code. The Online Python Tutor has
been used by over 3.5 million people and has been extended
to support additional languages including JavaScript and C.
Algorithm visualizations [4, 8, 33] can illustrate the behavior
by visualizing each step in the algorithm and have been shown
to improve understanding of the behavior [13].

Many debugging tools provide coordinated views to display
relevant system information and facilitate tracing of the exe-
cution history. The Whyline [20] visualizes the path of run-
time actions relevant to a “why” or “why not” question about
the runtime behavior. Timelapse [5] visualizes web event
streams and displays linked views of internal state informa-
tion; breakpoints allow programmers to trace state information
to particular parts of the original source code. FireCrystal [28]

emphasizes the connection between code and runtime behav-
ior by extracting the relevant CSS, HTML, and JavaScript code
responsible for behaviors on a web page. Hoffswell et al. [18]
describe visual debugging techniques that show the history of
interaction events and relationships within the code to debug
interactive visualizations. Our system provides a more direct
link between program state and source code by directly aug-
menting a code editor with visualizations of program behavior.

Theseus [23] similarly narrows the connection between run-
time behavior and code by displaying visualizations of pro-
gram calls alongside the source code and call stack. In situ
visualizations of program behavior have been developed for
a variety of programming topics including code properties
such as the edit history or code author [15], variable read/write
accesses [1], performance behavior [2], and real-time pro-
gramming tasks [34]. Bret Victor [36] describes design con-
siderations for a programming system to support program
understanding tasks aided by both code annotations and vi-
sualizations. Our work contributes to this body of work by
presenting design considerations for the incorporation and
placement of generic augmentations within code. We further
describe the design space for visualizations of program state
and temporal changes to program variables.

Text and Environment Augmentation
Text augmentations display supplemental information to sup-
port or extend the text [6, 38]. Tufte [35] identified sparklines
as a way to incorporate small, data-rich visualizations into
text. Goffin et al. [9] have generalized this idea to include any
form of word-scale graphics. Goffin et al. [10, 11] addition-
ally present design considerations for the placement of word-
scale graphics and for incorporating interactions.Willett et al.’s
scented widgets [37] augment standard navigational widgets
with visualizations of page visitation or content engagement.
Such visualizations help orient users within the space of con-
tent and help them to engage with underutilized content. Our
work similarly aims to attract user attention to areas of interest
by providing contextually relevant visualizations of program
state that highlight interesting trends in the runtime behavior.

USAGE SCENARIO
Programmers often have a set of implicit assumptions about
how their code will behave, which reflect their original in-
tentions when writing the code. Consider a case in which a
programmer is creating a scatter plot visualization that sup-
ports panning and zooming. The programmer may define
xMin, xMax, yMin, and yMax values that track the view port
position and update based on how much the user has dragged.
These values can then be used to determine the current do-
main for each axis (xDomain and yDomain). The programmer
decides to vary the point size based on the relative zoom
level, using the span of the xDomain as a proxy. However, the
programmer accidentally introduces an error where the xMin
and xMax values are mutually dependent and therefore cause
the xDomain to stretch as the user pans the visualization. With
the code wired up to use all the variables, the programmer may
begin testing the output via interaction.



The programmer starts by performing pan operations to see
how the visualization updates based on the changing values
of the axis min and max (xMin , xMax ,
yMin , yMax ), the computed domains
(xDomain and yDomain ), and the point
size . However, even while only panning, the scat-
terplot visualization seems to also zoom into the points. This
behavior is surprising, as it does not reflect the programmer’s
intentions. Looking at the dynamic code behavior indicated
by the inline visualizations, the programmer notices that the
size is increasing while panning. The size is based
on the span of the xDomain (which should not change while
panning), revealing an underlying error in how xDomain is
computed: the xMin and xMax values are mutually dependent
and thus produce an error when updated sequentially.

DESIGN CONSIDERATIONS
Code augmentations narrow the gulf of evaluation between
the programmer’s code and the runtime behavior by surfacing
contextually relevant information in situ. In this section, we
describe three requirements that inform the design of effective
in situ visualizations: they must be comparable, salient, and
unobtrusive. These properties are motivated by prior work
surrounding text augmentation and program visualizations.

In situ visualizations help programmers draw connections be-
tween variables in the code and their runtime behavior. Code
augmentations should facilitate identification of important
trends that can amend the programmer’s understanding of the
runtime behavior. Comparability is particularly essential for
understanding the overall behavior. Programmers need to in-
teract with multiple visualizations to understand the behavior
of different variables in the code. For example, on-demand
linking [3] can enable the programmer to understand the re-
lationships between different variables. When comparability
is essential to the programmer’s current task (e.g., to compare
the values of related variables), the augmentations should pri-
oritize placement decisions that facilitate comparison across
separate augmentations using alignment and shared axes [30].

The code augmentations should adapt to provide contextually
relevant information for the programmer’s current task and
should update their salience to attract the programmer’s at-
tention to potential areas of interest. The placement [10, 38]
and animation [16, 25] for a code augmentation influence
the salience. The temporality (snapshot or sequence) of the
augmentation impacts its utility for particular tasks.

The code augmentations must remain unobtrusive so they do
not detract from the programmer’s primary task. The amount
of text reflow and occlusion [10, 38] can increase the obtru-
siveness of the code augmentations. The code augmentations
should minimize changes to the position and visibility of the
code when the programmer is actively reading the code. How-
ever, violating such layout concerns may better maintain the
code structure or improve augmentation salience at the pro-
grammer’s periphery (e.g., while testing the program output).

DESIGN SPACE OF CODE-EMBEDDED VISUALIZATIONS
In this section, we describe the design space of embedded
visualizations (Figure 2). Programmers must understand the
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Figure 2. We identified ten visualizations for code augmentation based
on the level of detail, variable data type, and temporality level of interest.

Figure 3. The "index_term" variable in this Vega [32] specification rep-
resents an object, so we select a representative property to visualize and
differentiate the augmentation from others using color. On line 44, the
programmer uses the index_term.price, so we choose "price" as the
representative property. The selected key is also shown on mouseover.

values of, and changes to, variables as their code executes.
Thus, we decompose the design space into two types of vi-
sualized data (value and set) at two levels of detail (data and
change) across two temporalities (snapshot and sequence). We
also consider issues of interaction, size, and placement.

Data Type: Value and Set
We separate program variables into two data types: value and
set. Value variables represent a single element of interest to the
programmer that takes the form of either a value (a number,
date, or string) or an object (a set of key-value pairs). Set
variables represent a collection of value elements for which the
programmer needs to understand the underlying distribution.

To represent objects in both value and set data, we perform
an object simplification in which the object is represented by
one of its properties (Figure 3). We select a representative
property of the object by identifying which of its properties
is most commonly used within the code. Visualizations of
objects are differentiated from others by color to help avoid
misunderstandings about the type of object variables.



Level of Detail: Data
For the data level of detail, the programmer is interested in un-
derstanding the exact value and underlying distributions of her
program variables. We thus identified several visualizations to
highlight properties of the data at different temporalities.

Value-Snapshot: Exact Value
When viewing a snapshot of the runtime behavior, we display
the exact value of the variable. For variables representing
a single object, we produce a simplified representation that
shows a single property of the object ; the full
object can be viewed on-demand .

Rationale. The programmer often has expectations about the
type or value of variables. Displaying the exact value makes it
easy to determine whether or not the value is of the expected
type or near the expected value. Development environments
often enable this check as an on-demand tooltip showing the
current value [12]; whereas other development environments
require the user to view this information via mouseover, our
representation eliminates the need for interaction by surfacing
the same information automatically.

Value-Sequence: Line and Horizon
Sequence representations emphasize comparisons across the
history (or a subset of the history) of the program runtime.
We identified two visualizations to show sequence data: a line
chart and a horizon chart [17].

Design. For numeric values, we display the exact value over
time. For categorical values, we position each category at its
own point on the y-axis, which allows the programmer to view
trends in the visitation history; for example, a sawtooth pattern

indicates habitual revisitation of an earlier state.
For arrays of values, we create a line for each element in the
array , based on the value type.

The length of the history can quickly surpass the number of
states that a programmer can easily reason over; in response,
we found it useful to limit the number of states visualized as
the program executes to a subset of the most recent states. We
found that visualizing up to twenty states with the horizon
chart provides a reasonably interpretable view
of the data, using four layers (for both positive and negative
values) [17]. However, the programmer can expand the time
window on-demand to view a larger slice of the history.

Rationale. The horizon chart is particularly useful for compar-
isons across positive and negative values [17], whereas the line
chart provides a more easily interpretable view of the overall
trend. For categorical values, the line chart may be useful
for visualizing patterns in the visitation history, but does not
otherwise encode useful information in the y position.

Set-Snapshot: Histogram and Heatmap
To provide an overview of set variables, we identified two
visualizations of the underlying distribution of set data: a
histogram and a heatmap .

Design. For sets of numeric values, we arrange the values
into uniformly sized bins. For categorical data, we compute
distinct bins for each category and visualize the top n. We
place all remaining values in a separate (“other”) bin and

visualize it alongside the top n. The “other” bin is colored
black and is drawn to scale up to the size of the largest bin in
the top n. This representation allows the programmer to make
comparisons among the largest bins while still representing
all the data. In the histogram , the set contains 8
different values in varying quantities. We visualize the top n
(where n = 6) and thus place two values into the “other” bin.

We found that visualizations with a size of about eight pixels
per bin are easily interpretable (as in the examples above) and
can support interaction on the elements. Representations that
push bars towards a width of two pixels make it
harder to distinguish between bins or interact effectively.

Rationale. We recommend the histogram as the position encod-
ing is a more effective representation than the color encoding
in the heatmap [24]. We include the heatmap for its amenabil-
ity to miniaturization, which we discuss later in the paper.

Set-Sequence: Line and Horizon
For set variables, the sequence representation needs to aggre-
gate the underlying results to provide an informative summary
of the behavior of the set variable over time. Similar to the
value type, we visualize the aggregated sequence data as either
a line chart or horizon chart .

Design. There are multiple ways to represent the value of
set variables at the sequence temporality. For this work, we
compute the variance of the dataset and visualize the difference
in the variance between the current and previous points in the
runtime behavior. Numerous aggregation measures could be
applied, and the utility of these measures is highly dependent
on the programmer’s task and requirements for the dataset.
As such, the programmer can configure the system to use the
appropriate aggregation measure for her task.

Rationale. Our decision to use the difference in the variance
was selected to show large shifts in the underlying distribution
of the data between states in the program runtime. However, if
the difference between states is of less interest, standard aggre-
gations (e.g., mean or median) may be more appropriate. For
set representations using the difference measure, we recom-
mend using the horizon chart as it more strongly
emphasizes large values and the direction of the change [17].
Horizon charts also provide a more easily interpretable view
of small differences given the small size of the visualization.

Level of Detail: Change
At the change level of detail, the value and set data types are
simplified to an indication of the level of change for the vari-
able. For value variables, the change is a boolean indicator of
whether or not the variable was updated between snapshots
of the program runtime. For set variables, the change is de-
fined as the number of elements that were added, modified,
or removed. The change level of detail helps to attract the
programmer’s attention to variables with dynamic updates.

Value-Snapshot: Indicator
The indicator shows whether a variable has changed in a
particular snapshot (or period) of the runtime behavior.



Design. The indicator is either empty when no change
has occurred or filled when a change has occurred within
snapshots of the program runtime. The indicator can be ex-
tended to provide additional information by displaying an
arrow indicating the direction of the change or other glyphs.

Rationale. The indicator acts as a midpoint between the snap-
shot and sequence temporalities by showing a comparison of
the current and previous states, or as a summary of the change
in a set of states. This augmentation is the simplest proposed
and provides a small indication of where the programmer
may want to focus her debugging efforts when understanding
changes in the runtime behavior.

Value-Sequence: Tick and Timeline
We identified two visualizations to show the history of changes
to value variables: tick and timeline .

Design. The timeline visualization shows a bar for each state
where the variable is updated. In the tick visualization, a teal
block is shown when a variable is updated and a brown
block is shown for states when the variable is not updated.

Rationale. The tick visualization is based on Tufte’s base-
ball sparkline [35], whereas the timeline is motivated by the
timeline from Hoffswell et al. [18]. For the change level of
detail, we recommend the tick visualization as it provides a
clearer indication of the behavior for every snapshot in the
sequence. The tick visualization allows the programmer to in-
spect the value of a variable even when it has not been recently
updated; for example, the programmer may be interested in
the value when it is used but not updated (e.g., the variable
represents a previously defined value and is only “read”). The
redundant position/color encoding allows the programmer to
easily extract the update status at a glance while also facilitat-
ing miniaturization. The timeline visualization may be more
appropriate when the variable does not have a value during
states when it was not updated (e.g., the variable only exists
for states when it has been newly defined).

Set-Snapshot: Modification Indicator
Similar to the indicator, the modification indicator shows
changes to set variables by counting the number of elements
added, modified, or removed at the current snapshot.

Design. The modification indicator creates a bar representing
the number of values that were added , modified , or
removed in the data. The starting point in the dataset labels
all values as “added,” and displays changes from that point.

Rationale. This representation allows the programmer to un-
derstand the impact of transformations on set data at a more
granular level than whether or not a change has occurred.

Set-Sequence: Stacked Area
We selected the stacked area chart to show the
changes within a set variable at the sequence temporality.

Design. The stacked area chart creates a band representing
the number of values that were added , modified , or
removed in the data at each snapshot within the sequence.

Rationale. This representation allows the programmer to see
information about the impact of transformations on set data
over time. In particular, this behavior can help programmers
understand when changes to a set variable are particularly
expensive due to unnecessary additions or removals.

Miniaturizations
To reduce the obtrusiveness of the code augmentations, we
designed miniaturizations for the visualizations. The miniatur-
ization for the horizon chart and line chart is a smaller version
of the horizon chart that appears as an underline of the text.
The miniaturization for both the histogram and heatmap is a
smaller version of the heatmap that appears as an underline
of the text. For the tick and timeline visualizations, the minia-
turization is a compacted version of the full visualization that
appears as an underline of the text. We also use the com-
pacted version of the tick visualization as the miniaturization
of the stacked area chart. Each of these miniaturizations was
designed to provide useful information similar to that of the
larger chart that is amenable to the smaller size constraints.
As the indicator is already small, and the exact value itself is
important, we do not provide additional miniaturizations.

Interaction
We include a number of interactions to facilitate analysis of
the visualizations and facilitate comparisons across represen-
tations. For the exact value representation, mousing over a
simplified object augmentation displays the
full object . For the line chart and horizon
chart, mousing over the visualization shows a cursor and the
value at the current point . To facilitate compari-
son between augmentations, holding shift draws a cursor and
value for the current snapshot across all visible charts in gray.
For augmentations representing an object simplification, the
cursor displays the property name used for the visualization in
addition to the full value .

For the histogram and heatmap, hovering over a bar shows
additional details, including the range or value for the current
bin and the number of elements. For visualizations represent-
ing a simplified object, the augmentation similarly shows the
bin and count, but also shows the name of the property that is
currently visualized (Figure 3). If the programmer holds shift
while interacting with the histogram, the environment updates
all the related visualizations to show the distribution relative
to the programmer’s current selection (Figure 1).

Mousing over the tick and timeline visualizations highlights
the snapshot and displays the value of the variable at that
snapshot . To facilitate comparisons, holding shift
highlights and displays the value for all visible augmentations.
For the modification indicator and stacked area visualization,
mousing over the visualization shows the number of elements,
added, modified, or removed from the set variable .

Visualization Size
To support the comparability of augmentations throughout
the code, we standardize the augmentation width, which is set
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to a constant value based on the average token size in the pro-
gramming language. The augmentation height is determined
by the line height. We add additional inter-word and inter-
line space as necessary. For certain placement techniques, we
use a variable width as the miniaturization and augmentations
appear in place. The standard size allows the programmer
to more easily compare between sequence augmentations as
the visualized time scale is the same [30]. Goffin et al. [10]
discuss design considerations for increasing the size of the
visualizations to fill the inter-line space or to add additional
inter-word padding in more detail.

Visualization Color
We vary the color for the code augmentation based on the type
of data being displayed in order to facilitate identification of
the type when visualizations are similar. For each type of visu-
alized data, we select a diverging color scheme to encode pos-
itive and negative values in the visualizations described in the
preceding sections. For augmentations that show object sim-
plifications, we further differentiate the color to attract the pro-
grammer’s attention to the simplification (e.g., index_term
in Figure 3). The decision to change the color based on the
type of the data makes it easier to differentiate between value

and set data, as value data often repre-
sents exact values whereas set data performs some aggregation
on the underlying data. Further differentiating the color for
object simplifications ensures that they stand out
from both value and set variable augmentations.

Placement of Code Augmentations
We identified twelve techniques for the placement of code
augmentations (Figure 4) and assess each technique based on
a set of design trade-offs. These placement options are an
extension of the techniques presented by Goffin et al. [10].

Placement Techniques
The right and left placements position the augmentation im-
mediately adjacent to the corresponding token. The above and
below placement techniques ensure that the individual lines
of code maintain their original structure, but may introduce
new whitespace lines and increase the overall code length.
The inline-transparent and inline-opaque placements draw the
augmentation over the corresponding token, thus requiring
interaction to improve legibility for the visualization or code.

To satisfy the need for unobtrusive augmentations, we include
the placement techniques: expand-inline and expand-below.
These placement techniques require the augmentation to in-
clude a miniaturization that displays the augmentation as an
underline of the text. Hovering over the token expands the
augmentation as either inline-opaque or below. However, un-
like below, expand-below does not add a whitespace line and
instead draws the augmentation over the existing code so as
not to require additional spacing in the code.

The inline-start and inline-end placement techniques position
augmentations on the same line, but not adjacent to their cor-
responding tokens. The inline-start placement leverages the
code indentation to place augmentations in the whitespace
at the start of the line. The inline-end placement maintains
the full readability of the line, using the augmentations as the
final punctuating marks. As multiple tokens may occur on
the same line, the augmentations can either be placed adja-
cently or overlapping, but some interaction is required to relate
augmentations back to their corresponding tokens.

The left-margin and right-margin placement techniques sepa-
rate the augmentations from the token by placing them in the
margin of the code editor but improve comparability across
augmentations. When multiple augmentations exist on the
same line, they overlap in the margin, thus requiring addi-
tional interaction to select the augmentation of interest.

Placement Trade-off Metrics
For each placement technique described in this section, we
discuss trade-offs in the application of the technique with
respect to the reflow requirements, line spacing, augmentation
width, vertical alignment, and occlusion. We provide a brief
description of each metric and include the results in Figure 4.

reflow The code must reflow inline to make space for the
augmentation, thus changing the length of the line.

spacing The code must add additional space between lines
to include the augmentation, thus changing the
length of the document.

occlusion The augmentation partially or fully occludes the
code, thus requiring interaction to improve legibil-
ity of the augmentation or code.

width The augmentation must be of a variable width to
fulfill the placement requirements.

alignment The augmentation will be vertically aligned with
other augmentations in the document.

Reflow. The left and right placement techniques introduce
reflow changes inline to make space for the visualization. De-
pending on the programming language used, these changes



may be minimal due to the amount of existing whitespace
and structure in the code. The inline-transparent and inline-
opaque placement techniques may reflow for small tokens
to improve the legibility of the augmentation by increasing
its width. If many augmentations are on the same line, the
inline-start placement may increase the indentation at the start
of the line. All other techniques do not cause reflow changes.

Spacing. Only the above and below placements add additional
spacing to the document. The impact of this additional spacing
is highly dependent on the structure of the code; for augmenta-
tions where whitespace is already available above or below the
line, we do not introduce a new line into the code but instead
use the existing whitespace (Figure 4, Above).

Occlusion. The inline-transparent and inline-opaque place-
ments occlude the token, thus requiring interaction to improve
the legibility of the augmentation or code. For the expand-
inline and expand-below techniques, the augmentations will
not occlude the code when miniaturized, but will introduce
some occlusion when expanded to their full size. The left-
margin, right-margin, and inline-start techniques may intro-
duce occlusion if the augmentations overlap when there are
more than one on a given line. For the inline-end placement,
augmentation can be positioned side-by-side to facilitate com-
parison. The above and below placements may need to handle
occlusion with other augmentations on the same line, as de-
scribed in [10]. Neither right and left occludes the text.

Width. The right, left, above, below, inline-start, inline-end,
left-margin, right-margin techniques can use a standard width
to facilitate comparisons. For the inline-transparent, inline-
opaque, expand-inline, and expand-below techniques, the
width must match the size of the token.

Alignment. The left-margin and right-margin augmentations
will be aligned, thus facilitating comparisons. Using the inline-
start placement can produce augmentations that are aligned
based on the indentation depth of their tokens. All other tech-
niques will not be aligned due to the original token position.

General Placement Guidelines
Based on our design considerations, the augmentations must
be comparable, unobtrusive, and salient, such that they at-
tract the programmer’s attention to interesting trends, without
detracting from her ability to perform her current task.

The comparability of the augmentations is largely affected
by their alignment and width. When the programmer needs to
make fine-grained comparisons between augmentations, the
margin-left and margin-right placements are ideal because
they maintain the same temporal axis across augmentations.

The unobtrusiveness of the augmentations requires minimal
changes to the code structure caused by reflow or additional
spacing; large structural changes can be detrimental to the
programmer’s ability to review the code [38]. Occlusion is
also relevant to the programmer’s ability to read the code
or extract information from the augmentations. When the
unobtrusiveness of the augmentations is most important, we
recommend using the expand-inline placement technique; this

technique provides an indicator of what variables are changing
while limiting changes to the visibility of the code.

The salience of the augmentations influences how easily the
programmer’s attention is attracted to particular augmentations
of interest. Whereas the expand-inline placement provides
some indication of variable changes or distributions, it can
easily be overlooked as it appears only as an underline. To
better attract the programmer’s attention, we recommend using
the right placement technique to produce a large augmentation
near the source of the token. For tokens on the periphery of
the programmer’s focus, the inline-opaque technique may be
better so as to reduce reflow changes to the document.

EVALUATION: AUGMENTING THE VEGA EDITOR
To evaluate the utility of in situ visualizations for program
understanding tasks, we conducted a user study with 18 pro-
grammers presented with unfamiliar programs written in the
Vega visualization grammar [32]. To perform this evaluation,
we identified in situ visualizations from our design space rel-
evant to novice users and appropriate for Vega runtime state.
We implemented these embedded visualizations as an exten-
sion to the online Vega code editor. In this section, we discuss
our use of Vega and selected embedded visualizations, study
methods, and experimental results. We have included the in-
structions, session script, task specifications, task questions,
and post-task questionnaire in the supplemental material.

Background on Vega
Vega is a declarative grammar for specifying interactive vi-
sualizations. The relative simplicity of Vega was convenient
for exploring the design space of in situ visualizations and
strategies for the placement and automatic incorporation of
embedded visualizations. However, many of Vega’s constructs
are representative of properties of more general languages.

The programmer produces a Vega specification in JSON format
that describes the data transformations, interactive behavior,
and visual appearance of the output visualization. Signals
are dynamic variables that capture interaction events on the
Vega output and can be used throughout the Vega code to
parameterize the behavior. Datasets represent collections of
data tuples and can be representative of more complex data
structures with arbitrary nesting and usage throughout the code.
References to particular data fields extract a property from
each tuple in the underlying datasets to be used as variables
throughout the Vega specification. The runtime state can be
represented by snapshotting the signal values.

The visual appearance of the output is specified via scales,
axes, legends, and marks. Scales are functions that map from
data values to visual properties, and can be visualized as axes
and legends. Marks can be arbitrarily nested and dynamically
initialized at runtime, thus representing complex data flows
during program execution. Marks can be parameterized by
both signals and data, with the help of scales to produce
reasonable mappings from data fields to visual properties.

Implementation in the Vega Editor
To evaluate the utility of embedded visualizations, we iden-
tified several in situ visualizations appropriate for Vega vari-



ables. We implemented the visualizations using D3.js and
utilized the Monaco [26] API to extract tokens from the Vega
code and insert the visualizations (see Figures 1, 3). Prior
to inserting the visualizations, we performed a preprocess-
ing step in which additional white space is inserted at the
visualization position. We identified two types of variables
in the Vega specification to visualize: signals (value vari-
ables) and data fields (set variables). Our implementation of
embedded visualizations for the Vega editor is available at
https://github.com/uwdata/code-augmentation.

In Situ Visualization Selection
We followed a simple rule-based process for selecting the type
of in situ visualization to display for each variable in the Vega
specification. For this implementation, we do not currently
allow the visualization type to change once selected, though
such automatic updates are an important part of future work.

Tooltip Hovering over a data field or signal name
shows the current state of the variable on-demand. For data
fields, the tooltip shows summary information about the data
set (e.g., the min, max, and mean value for that field). For
signals, the tooltip shows the current value.

Indicator For signal variables that are not expected to
change (e.g., do not include an “update” clause or react to input
events), we selected the indicator to deemphasize the signal
definition. The indicator also allows quick value extraction.

Line For signal variables where the type at run-
time is a number, we select the line visualization because it
represents the range and value of the variable over time, rather
than a snapshot of the change. For signal variables that are an
array of numbers, we use a different line for each element in
the array to fully represent the variable.

Tick For signal variables that are initialized to
null or are not a number at runtime, we selected the tick visu-
alization to emphasize when changes occur and to show the
behavior of the variable over time. We selected the tick visual-
ization rather than the timeline because the tick
visualization explicitly represents each state in the program
runtime and may thus be more informative for novice users.

Histogram We selected the histogram for data
field variables because it visualizes the current state. While the
horizon chart can highlight substantial shifts in the
historical values of the variable, this visualization summarizes
the variable rather than representing the underlying values.
The horizon chart is also more likely to be unfamiliar to novice
users and may thus require additional training to interpret. The
histograms can highlight changes between states by observing
shifts in the distribution. Since position encodings are more
interpretable than color encodings [24], we chose not to utilize
the heatmap visualization.

For the evaluation, we selected the right placement to ensure
that the in situ visualizations are salient and in close proximity
to their corresponding token. This placement choice was moti-
vated by Zellweger et al.’s [38] discussion of the importance
of proximity for embedding contextual information. Further-
more, the right placement reduces the overall reflow of the
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Figure 5. Participants completed two tasks, one in each of two conditions
(baseline or visualization); we counter-balanced the conditions across
participants. This figure shows the steps followed in the evaluation, with
each participant completing only one path.

document and follows the reading direction of the code. We
selected this set of visualizations to provide ones that were
likely to be familiar to our novice users and thus interpretable
with minimal training. However, other visualization designs
may be more useful for specialized tasks by expert users. For
example, the modification indicator or stacked area

chart could be useful for visualizing tuple-specific
changes to the underlying Vega datasets, which is useful for
particular debugging tasks surrounding data transformations.
As such, we did not evaluate these visualization types.

Participants
We recruited 18 students (7 female, 11 male) from our univer-
sity, including both PhD (4) and undergraduate (14) students.
Participant ages ranged from 18 to 30 (µ = 21.1, σ = 3.74).
Participants completed a screening survey about their experi-
ence and programming language familiarity to ensure all par-
ticipants had prior programming coursework or job experience.
The most common programming language regularly used by
our participants is Java, followed by Python, JavaScript, and
C/C++. All of our participants were novice Vega users (i.e.,
were unfamiliar with Vega), though two participants had pre-
viously seen Vega in other contexts. Each participant received
a $20 gift card for completing a 90 minute session.

Methods
Participants answered program understanding questions about
two Vega programs, with and without the assistance of in situ
visualizations of program behavior.

At the start, participants were given an instruction sheet with
a sample Vega program, an explanation of the code, and an
introduction to the development environment and important
keywords. Participants were then given a training task in which
they answered several sample questions and viewed the sample
answers. During this time, participants were encouraged to ask
any questions about Vega or the task setup. Once participants
started the tasks, the researcher no longer answered questions.

For the study tasks, we selected four Vega programs that cover
a range of visualization designs, datasets, and program under-
standing challenges, three of which exhibit an error.

Population. A population pyramid with a slider to select the
year that is visualized. This Vega specification includes miss-
ing data for the year 1890, which causes derived data sets to
be empty and the visualization to be blank at this point.

Index. A line chart of stock prices with an interactive cursor
that selects an index point to which stocks are normalized
to show investment returns. The Vega specification includes
derived datasets and nested data declarations. An error in one

https://github.com/uwdata/code-augmentation


of the data transformations causes all tuples to be filtered out
at certain times, causing the lines to visually flatline.

Scatterplot. A scatterplot of points that supports infinite pan-
ning. This Vega specification includes many interconnected
signal definitions to define the interaction; due to a bug with
the evaluation order of signals, the domain of the axes be-
comes distorted while panning. This example is similar to the
one described in the Usage Scenario.

Overview. Two area charts showing stock price over time;
selecting a region in the smaller chart zooms the larger one.
This Vega specification includes many interconnected signal
definitions nested in the specification. There is no error.

Participants completed two tasks, one in each of two condi-
tions: baseline and visualization. In the baseline condition,
participants were given a simple code editor based on the on-
line Vega editor. Tooltips were added to the signal and data
field tokens in the code to show information about the runtime
state, similar to other common development environments. For
the visualization condition, the editor was additionally aug-
mented with our in situ visualizations of the program behavior.
Prior to the visualization condition, participants were shown
an instruction sheet with an explanation of the in situ visual-
izations and were encouraged to experiment with them using
the same visualization seen in the training task. We counter-
balanced the order of the conditions across participants. The
experimental protocol is shown in Figure 5.

Participants answered 18 program understanding questions for
each task about major Vega concepts, such as signals, data
sets, and data fields, which required participants to reason
about how the state of the visualization changed during in-
teraction. These questions encouraged participants to read
and experiment with the program to develop an understanding
of the interconnectedness and runtime behavior of the code.
Participants were also asked to identify any unexpected be-
havior in the Vega output and answer follow-up questions
about the source of that unexpected behavior; participants
were not informed that an error existed if they did not identify
it themselves. Participants provided free-form answers for
each question and a rating of their confidence on a scale from
1 (not confident) to 5 (extremely confident).

Participants finally completed a post-task questionnaire in
which they rated their self-perceived speed and accuracy on
the task questions on a scale from 1 (better with baseline con-
dition) to 7 (better with visualization condition). Participants
also scored how helpful, interpretable, and intrusive each of
the in situ visualizations were on a scale from 1 (not) to 5
(extremely). The larger scale for the speed and accuracy was
selected to encourage nuanced comparison of the conditions.

Quantitative Results & Analysis
To perform the analysis, we first created a gold-standard set
of answers for each task and scored participant answers on
an integer scale from 0 to 2 (“incorrect,” “partially correct,”
“correct”). Scores were provided by the second author, who
was blinded to the study condition for each task. Final grades
were determined by simple summation.

Figure 6. The pseudo-median value and 95% confidence interval (un-
less otherwise noted) for how helpful, interpretable, and intrusive each
in situ visualization was on a scale from 1 (not) to 5 (extremely). Median
values are labeled with the p-value for the 1-sample Wilcoxon signed
rank test. Note: The Wilcoxon rank test could not compute the full 95%
confidence interval for scores tightly clustered near one or five. We in-
clude the R script for computing the statistics in supplemental material.

We fit linear mixed-effects models for participants’ grades, log-
transformed task times, and average confidence. Each model
included fixed effects for condition and presentation order,
plus per-subject random intercepts. Likelihood ratio tests indi-
cated a marginally significant effect of the visualization condi-
tion on task grade (χ2(1) = 3.30, p < 0.1). Participants had
roughly one more “correct” (or two more “partially correct”)
answers in the visualization condition overall. Exploratory
data analysis also indicated a strong difference in grades due to
education level, but with similar absolute grade improvements
in the visualization condition. There was a significant effect
of task order on the log time for participants to complete the
task (χ2(1) = 8.96, p < 0.01), with participants faster in the
second task regardless of condition. We found no significant
effect of condition or order on participant confidence.

For the post-task questionnaire, we used 1-sample non-
parametric Wilcoxon signed rank tests with a null hypothesis
that the result is neutral (middle Likert scale value). We found
significant positive effects in favor of the in situ visualiza-
tions for the participants’ self-reported speed (p = 0.002) and
accuracy (p = 0.0026).

Figure 6 depicts subject ratings of how helpful, interpretable,
and intrusive each of the visualizations were. We found a
significant positive effect for line visualization helpfulness
(p= 0.005) and a marginally positive effect for histogram help-
fulness (p = 0.186). We found a significant positive effect for
how interpretable the value (p = 0.003), indicator (p = 0.021),
and line (p = 0.015) visualizations were, and a marginally sig-
nificant positive effect for the histogram (p = 0.132). For the
intrusiveness of each visualization, we found a significant neg-
ative effect for the value (p = 0), indicator (p = 0.005), line
(p = 0.009), and tick (p = 0.031).

Qualitative Results & Discussion
We selected questions that would be reasonable to expect
participants to answer regardless of condition. The notable
significant effect of task order on the completion time suggests
some improved knowledge of the language and questions,
which helped participants know where to look. While we
did see a marginally significant effect of the visualization
condition on task grade, participants were generally able to
answer the task questions by reviewing the code and probing
the state information with the tooltip on signals and data fields.



The question answering process could be quite different be-
tween the two conditions. Question 8 asked participants to
identify how each signal that updates is used throughout the
code. In the baseline condition, P18 spent over 16 minutes
attempting to identify how each signal in the specification
behaved (Q8 median 3.65 min). In order to fully answer this
question, P18 carefully experimented with different interac-
tions, probing the signal value with the tooltip to identify when
in changed. This back and forth between testing interactions
with the output and assessing the state clearly demonstrated
the disconnect between the code behavior and output.

Participants in the visualization condition similarly tested in-
teractions, but could identify changes at a glance. As P2 put
it: “the [in situ] visualizations allowed me to connect the
dots between the code, its properties, and what it did.” When
comparing the two conditions, P11 noted that “The biggest
factor for me was just seeing which values change in real-time
when interacting with the visualization.” Rather than reading
the code or probing the state on-demand, participants could
view changes as they worked rather than as a separate task.

We saw a significant positive effect in favor of the in situ
visualizations on both participants’ self-reported speed and
accuracy. Across conditions, participants utilized search to
find keywords of interest. But, as P15 explains, “the code
visualizations helped better locate the signals and made me
more confident about my answers.” Moreover, the in situ visu-
alizations turned the underlying data into a physical artifact
to reason over. P2 noted that “I found it helpful to be able to
interact with the data on a graphical, physical level.”

The error in the index chart can be a challenging one to rea-
son about because it occurs due to a small difference in the
date/time of the tuples in the dataset from the filter window.
For most participants, it was clear that the error only occurred
at certain dates in the visualization. However, the error was
not with the signal itself. For P9, it became clear that the
error was in the data because “when I mouse over the flatline
behavior, the ‘index’ field changes and the [histogram] shifts
to the left (next to the variable).” When interacting with the
in situ visualization of the signal, P9 also correctly noticed
that that indexDate contained a time in addition to the date.
While none of the participants correctly diagnosed the error
in its entirety, P9’s observations were crucial steps towards
uncovering the convoluted source of this error. The in situ
visualizations provide a lightweight way to incorporate the
underlying state into the program understanding process.

While the utility of in situ visualizations for interpreting in-
teractive behavior was apparent, participants sometimes strug-
gled to understand their contextual implications, particularly
for the data fields. For instance, to understand the range of
different data fields in the index chart, P9 inspected the visual
encodings and noted “Oh, okay, I guess Microsoft... for some
reason.” Although P9 identified that the data field only had
one value (which was Microsoft), it was not clear why this was
the case when other parts of the code showed the full range
(e.g., all five companies). In this case, P9 had overlooked the
nested dataset declaration; five different marks are dynami-
cally created, but the embedded visualizations only show the

results for one of them. To understand where each data field
came from, participants needed a more intimate understanding
of the implementation hierarchy and dataflow.

LIMITATIONS AND FUTURE WORK
While Vega’s relative simplicity was convenient for evaluating
the design space of in situ visualizations, we believe that Vega
is an exemplar of a larger class of reactive languages, such as
React [19] and Elm [7], for which these techniques could apply.
For example, Elm [7] was originally designed as a reactive
programming language that similarly utilizes the streaming
constructs implemented (and visualized) in Vega.

Moreover, many of Vega’s constructs are representative of
properties seen in other languages. The arbitrary nesting of
mark definitions produces numerous examples of how scope
can be a concern when referencing particular variables and
how such environments are dynamically allocated at runtime.
Since marks can be dynamically added and removed, the scope
and number of instances can change as the programmer inter-
acts. While the design space presented in this paper provides
a breakdown of potential data types of interest, we do not
currently address this underlying code structure. Furthermore,
the use of object simplification and summarization in the em-
bedded visualization shows one approach to handling complex
nested data structures by emphasizing particular properties
of interest. Future work should explore how interaction or
other techniques might surface relevant scoping information
or navigate complex nested data structures.

Vega’s reactive framework was useful for effectively snapshot-
ting the program behavior for producing the in situ visualiza-
tions. While we do not propose advances in system logging,
techniques such as Dolos from Burg et al. [5] enable efficient
logging with minimal overhead for web programming. This
infrastructure could provide an effective framework on which
to introduce in situ visualizations for web development.

While in situ visualizations helpfully call attention to the dy-
namic behavior of program variables, it may be important to
change their salience relative to the programmer’s current task.
P14 noted that “I thought the code visualizations were cool
and helpful, but they could also be a little distracting.” Future
work should consider techniques to infer the programmer’s
task and deploy in situ visualizations as needed.

In this paper we described the design space for embedded
visualizations of program behavior, including design consid-
erations for the placement of such visualizations within code.
In an evaluation with novice Vega users, we found that par-
ticipants improved their overall task grade by about 2 points
when using the in situ visualizations and exhibit significant
positive effects on their self-reported speed and accuracy.
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