
Eurographics Conference on Visualization (EuroVis) 2016
K.-L. Ma, G. Santucci, and J. van Wijk
(Guest Editors)

Volume 35 (2016), Number 3

Visual Debugging Techniques for Reactive Data Visualization
Jane Hoffswell1, Arvind Satyanarayan2, and Jeffrey Heer1

1 University of Washington 2 Stanford University

(h)

(f)

(e)

(d)
(g)

(b)

(a)

(c)

Figure 1: Visual debugging techniques enable inspection of program state and interaction logic for a reactive data visualization in Vega.
Designers author (a) a declarative specification to produce (b) an interactive visualization. (c) Tooltips on the visualization provide intro-
spection into visual encodings while viewing a past state via (d) replay. Recorded interactions are shown in (e) an overview and (f) a timeline.
(g) A time series shows the variability of data attributes in (h) the backing datasets.

Abstract
Interaction is critical to effective visualization, but can be difficult to author and debug due to dependencies among input
events, program state, and visual output. Recent advances leverage reactive semantics to support declarative design and avoid
the “spaghetti code” of imperative event handlers. While reactive programming improves many aspects of development, textual
specifications still fail to convey the complex runtime dynamics. In response, we contribute a set of visual debugging techniques
to reveal the runtime behavior of reactive visualizations. A timeline view records input events and dynamic variable updates,
allowing designers to replay and inspect the propagation of values step-by-step. On-demand annotations overlay the output
visualization to expose relevant state and scale mappings in-situ. Dynamic tables visualize how backing datasets change over
time. To evaluate the effectiveness of these techniques, we study how first-time Vega users debug interactions in faulty, unfamiliar
specifications; with no prior knowledge, participants were able to accurately trace errors through the specification.

Categories and Subject Descriptors (according to ACM CCS): H.5.2 [Information Interfaces]: User Interfaces—GUI

1. Introduction

Interaction techniques such as filtering, brushing, and dynamic
queries facilitate data exploration and understanding [HS12,
PSCO09]. However, implementing such interactions has tradition-
ally required event callbacks, which necessitate manually tracking
interleaved state changes [Mye91].

In response, recent work [SWH14, SRHH15] leverages event-
driven functional reactive programming [WTH02] to provide
declarative primitives for interaction design. This approach models
input events as data streams, which in turn drive dynamic variables
called signals. Signals parameterize the remainder of the visualiza-

tion, endowing transforms, scales, and marks with reactivity. When
new input events fire, corresponding signals are automatically re-
evaluated. Updates propagate to visual encodings and the visual-
ization is re-rendered. By deferring low-level control flow to the
system, declarative visualization languages can enable rapid itera-
tion of encoding and interaction design.

However, when interactions produce erroneous results, existing
debugging techniques such as breakpoints or stack traces are no
longer effective since users are unfamiliar with the underlying con-
trol flow. Therefore, new debugging techniques are needed to un-
derstand relevant state changes and assess breakdowns. The well-

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

Jane Hoffswell, Arvind Satyanarayan, Jeffrey Heer / Visual Debugging Techniques for Reactive Data Visualization

defined semantics of declarative visual encodings provide new op-
portunities for enhanced debugging support, as tools can surface
traces from pixels, through scale transforms, to source data (and
vice versa). Regardless of programming style, interactions can be
inherently difficult to author and debug. Developers must under-
stand complex dependencies among input events, program state,
and visual output. Textual specifications alone are inadequate for
tracking relationships through time-varying behaviors. To debug
faulty interactions, developers must inspect the state of events and
program variables during interaction, and track changes over time.

In this paper, we describe formative interviews with visualization
developers to assess their debugging needs. We then contribute a
set of visual debugging techniques for reactive data visualizations,
motivated by three design goals to enable users to probe the state,
visualize relationships, and inspect transitions.

Consider debugging an index chart of stock prices that interac-
tively renormalizes the data based on the mouse position (Fig. 1b,
2). A user first writes a specification (Fig. 1a) of encoding rules and
interactions. During interaction, the user notices that at certain time
points, all the time series flatline (Fig. 4b) due to a specification
error. The user must now assess the dependencies between interac-
tion, program state, and visual output. She could start by recording
interactions in the timeline (Fig. 1f), and replaying (Fig. 1d) to ob-
serve how events propagate. The overview (Fig. 1e) summarizes
activity, allowing for quick identification of interaction patterns.
In-situ annotations (Fig. 1c) expose the faulty position encoding
by showing the data values and encodings corresponding to the se-
lected pixel. The user can then inspect the backing dataset via dy-
namic tables (Fig. 1h). Guided by the attribute variability (Fig. 1g),
she observes that some data attributes have been zeroed out, which
she selects to link back to the specification to fix the error.

We instantiate these techniques in the context of Vega [SWH14],
a declarative visualization grammar that supports reactive interac-
tion design. In an initial evaluation, we study how 12 first-time Vega
users debug faulty interactions in unfamiliar specifications. Despite
their lack of expertise with Vega, we find that the participants can
accurately trace errors to problematic lines in the specifications by
employing our visual debugging techniques.

2. Related Work

Our visual debugging techniques leverage event-driven functional
reactive programming abstractions, and are informed by prior work
on timeline- and replay-based interactive debuggers, and visual rep-
resentations of program state and behavior.

2.1. Functional Reactive Programming

Event-Driven Functional Reactive Programming (E-FRP)
[WTH02], one of many FRP variants [BCC∗13], is an in-
creasingly popular paradigm for authoring interactive behaviors.
E-FRP models low-level input events as continuous streams of data,
which can be composed into dynamic variables called signals.
When a new event fires, the E-FRP runtime propagates it to the
corresponding streams, and dependent signals are updated in two
phases. In the first phase, signals are reevaluated using their depen-
dencies’ prior values; these dependencies are then reevaluated in

the second phase [WTH02]. E-FRP has been shown to be suitably
expressive for interactive web applications [MGB∗09, CC13] and
visualizations [CL08, KL15, SWH14]. In this section, we focus on
the former and defer the latter to the subsequent section.

Although E-FRP is sufficiently expressive for web applications,
debugging support remains weak. Many existing debugging tech-
niques — such as breakpoints and stack traces — no longer apply,
as users declaratively specify interactions. The E-FRP runtime is
entirely responsible for the program execution, the particulars of
which will be unfamiliar to end-users. The Elm language [CC13]
has begun to develop an interactive debugger, inspired by Bret
Victor [Vic12]. The Elm debugger allows recording and replaying
program states, but developers must manually annotate their code
with watch and trace statements. Tracked states are then sim-
ply printed out in a list. In contrast, our timeline view automatically
tracks all user-defined signals. Along with the overview, the time-
line provides users with a visual representation of event and state
propagation, which facilitates identifying faulty behavior.

2.2. Timeline- and Replay-based Debuggers

The technique of recording and replaying program states can also
be found in the FireCrystal [OM09] and Timelapse [BBKE13] sys-
tems. Both systems target interactive behaviors on web pages, but
require significant supporting infrastructure. For example, to cap-
ture user interaction, FireCrystal must register a watcher on the
Document Object Model (DOM) and a number of event listeners;
it then leverages the Firefox browser’s debugging API to identify
which line of code is executed. The authors report that this opera-
tion is CPU-intensive and can affect interactive performance during
recording [OM09]. For Timelapse, Burg et al. developed Dolos: ex-
tensions to the WebKit browser engine to record and replay inter-
actions. By operating at this low-level, Dolos overcomes the over-
head of watchers and event listeners, and integrates directly with
the browser’s existing JavaScript inspector [BBKE13].

By using E-FRP semantics, such complex infrastructures are not
necessary to support our visual debugging techniques. In particular
(as detailed in §3), we need only track and visualize signal values
over time. This simplification is possible because signals express
the bulk of an interaction technique, abstracting away the particular
input events that trigger interactive behavior. Simple static analysis
of the specification can then identify where signals are used.

2.3. Visual Representations of Program Behavior

Representing program state visually has been found to be a pow-
erful pedagogical aid. Online Python Tutor [Guo13] provides vi-
sualizations of allocated Python objects, pointer references, global
variables, and stack frames. Teachers have incorporated this sys-
tem into course materials and reported that the diagrams mirrored
ones they produce in class to help students build mental models.
This finding was corroborated by students accessing the site as a
supplementary learning tool, who shared positive anecdotes about
its utility on online discussion forums. Whyline [KM04] and The-
seus [LBM14] investigate the effects of introducing visualizations
within integrated development environments. Whyline’s extensions
reduced debugging time by a factor of 8, while developers adopted

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

Jane Hoffswell, Arvind Satyanarayan, Jeffrey Heer / Visual Debugging Techniques for Reactive Data Visualization

{...

 "signals": [{
 "name": "indexDate",
 "init": {"expr": "time('Jan 1 2005')"},
 "streams": [{
 "type": "mousemove", "expr": "clamp(eventX(), 0, width)",
 "scale": {"name": "x", "invert": true}
 }]
 }],

 "data": [{"name": "stocks", "url": "data/stocks.csv", ...},
 { "name": "index", "source": "stocks",
 "transform": [{
 "type": "filter",
 "test": "month(datum.date) == month(indexDate) && ..."
 }]
 },
 { "name": "indexified_stocks", "source": "stocks",
 "transform": [
 {"type": "lookup", "on": ...},
 {"type": "formula", "field": "indexed_price", "expr": "..."}
]
 }],

 "scales": [{
 "name": "y", "type": "linear",
 "domain": {"data": "indexified_stocks", "field": "indexed_price"},
 "range": "height"
 }, ...
], ...
}

x-1

Event
Stream

Scale
Inversion

mousemove

indexDateSignal

stocks.jsonRaw Data

FilterData
Transforms Lookup

Formula

index_pt

indexified
stocks

y

indexed_price

Scales

(a) (b) (c)

Figure 2: (a) An excerpt of the Vega JSON specification and (b) a corresponding design schematic for (c) an interactive index chart. Event
streams capture mousemove events that are passed through an inverted scale transform and stored in a signal. The signal parameterizes
data transforms to select an index point and normalize stock price time-series data.

entirely new problem-solving strategies by leveraging Theseus’ vi-
sualizations. These results motivate our study of visual techniques
for debugging reactive visualizations.

System profilers also make use of visualizations. For example,
Flame Graphs [Gre15] are widely used to understand the CPU

and memory performance of applications, and similar visualiza-
tions have been added to profile JavaScript performance within the
Chrome web browser [Goo15b]. Akin to GNU ggprof [GKM82],
Chrome also provides graph visualizations to profile JavaScript’s
memory usage [Goo15a]. More recently, Perfopticon [MHHH15]
visualizes the query plan and execution behavior of distributed
database systems. Algorithm visualizations map low-level algo-
rithmic behavior to visual properties, with animations showing
changes over time [DFS02]. All of these visualizations have been
purpose-built to expose low-level execution details, enabling expert
users to identify performance bottlenecks. During our formative
studies, experienced visualization designers reported that display-
ing the execution pipeline that produces the resultant visualization
would only be tangentially useful when debugging faulty behavior.
The user defers execution to the system, rendering low-level vi-
sualization techniques ineffective since users lack familiarity with
the internal structure. Thus, our techniques maintain the abstraction
level of the specification language used by users.

3. Background: The Vega Visualization Grammar

Our visual debugging techniques were developed in the context
of Vega, a declarative visualization grammar. In this section, we
briefly describe the aspects of Vega relevant to this paper. For con-
crete interactive examples, we refer interested readers to the online
Vega editor: http://vega.github.io/vega-editor.

Closely following the model of Protovis [BH09] and
D3.js [BOH11], Vega visualizations comprise graphical prim-
itives called marks, such as bars, plotting symbols, and lines,
whose properties are determined by the attributes of backing
datasets. Integrated data transformation pipelines provide op-
erations including statistical summarization and spatial layout
(e.g., treemaps and cartographic projections). Scales map data

attributes to visual variables, and are visualized by guides (i.e.,
axes and legends). Vega visualizations are expressed using JSON.
A JavaScript runtime parses input specifications and produces
resulting visualizations [SRHH15].

To support interaction design, Vega uses Event-Driven Func-
tional Reactive Programming (E-FRP) [SWH14]. Input events are
modeled as streams of data, and an event selector syntax facilitates
stream composition. For example, [mousedown, mouseup]
> mousemove specifies a stream of mousemove events that
occur between mousedown and mouseup (otherwise known as
drag). Event streams serve as a first-class data source. Signals are
in turn defined as reactive expressions over stream values. For in-
stance, a signal might extract the x and y coordinates from the most
recent mouse input event. Signal values defined in pixel space can
be passed through inverse scale transforms to map back to the data
domain. Scale inversions allow interactive behaviors to generalize
across distinct coordinate spaces (e.g., small multiples) or coordi-
nate multiple visualizations (e.g., brushing and linking).

Signals can parameterize the remainder of the Vega specifica-
tion, thereby endowing data transformations and visual encodings
with reactive semantics (Fig. 2). Reactive updates (referred to as
pulses) occur in two steps [WTH02]. When an event occurs, de-
pendent signals are re-evaluated in their specification order. This
step allows signal expressions to access the previous values of de-
pendencies listed later in the specification; these dependencies are
subsequently updated on the same pulse. Once the signals have up-
dated, dependent data transformations and visual encodings are re-
computed in topological order of the underlying dependency graph.

Signals are critical for enabling the development of our visual de-
bugging techniques. Signals decouple low-level input events from
interaction logic. For example, the same set of named signals can
be driven by mouse and touch events. Moreover, signals express
the bulk of the interaction logic and participate in visual encoding
either as direct parameters or by parameterizing simple if-then-else
encoding rules. As a result, signals provide a meaningful entry-
point into an interaction specification. In contrast to imperative
event handlers, complex static analysis is not required to identify
and surface the relevant program state.

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

http://vega.github.io/vega-editor

Jane Hoffswell, Arvind Satyanarayan, Jeffrey Heer / Visual Debugging Techniques for Reactive Data Visualization

4. Formative Interviews & Design Goals

To better understand the debugging needs for reactive data visual-
ization, we conducted formative interviews with Vega developers
regarding their development processes. At the time of the study,
Vega’s reactive extensions had not yet been officially released, so
participants were primarily familiar with static visualizations.

Prior to this work, there was no infrastructure for debugging
visualizations in Vega. Users could only rely on the JavaScript
console to traverse the underlying system internals. However, this
method was not discoverable or intuitive for novice users. Access-
ing and navigating the system internals requires existing knowl-
edge of how to locate relevant information, which is often deeply
nested in the internal structure. This structure contains extraneous
details that complicate identification of relevant information. The
structural disconnect between signals, data, and encodings makes
it hard to track changes between components, thus making it im-
practical for complex tasks. An example of the debugging process
in this environment is available in the supplementary material.

Participants. We recruited 8 software professionals (all male), all
with experience creating static Vega visualizations, and none affili-
ated with the University of Washington. Participants were selected
based on their participation in the Vega community. Each interview
lasted about 30 minutes; participants did not receive compensation.

Protocol. The semi-structured interviews examined each partic-
ipant’s development process as related to Vega. Participants were
shown sample visualizations of Vega’s dataflow graph and asked to
reflect on the utility of such techniques with respect to their debug-
ging needs; one participant was unable to access and view the sam-
ple visualizations during the interview. The full script is included in
the supplementary material and includes the following questions:

• What was the last (or most troublesome) error you encountered
when generating a Vega specification?
• In what ways do you think the debugging process could have

been facilitated?
• Do you think that having the dataflow graph visualized would be

useful for the development process?

Data Collection. The interviews took place over Skype and
Google Hangouts. The example visualizations were shared using
Google Docs. We captured audio recordings for later review and
transcribed notes during the interview.

Results. Errors in encoding are often visually salient (e.g., points
are filled with the wrong color), but tracing the error through the
specification can be difficult — is the result due to an incorrect
scale definition, an error in data transformations, or a problem in
the input data itself? With Vega’s declarative model, users lack vis-
ibility into the state of these components. One participant noted
that “when you mess up that JSON you get an error from deep in
JavaScript land,” while another participant described difficult de-
bugging scenarios where “[the resultant visualization is] just blank
and you don’t know why.”

Participants noted that visualizing the internal dataflow graph
could be beneficial for Vega system developers, but provides too
much internal information tangential to their user-level debugging
tasks. In particular, one participant noted that “the [dataflow] graph

presumes insight into how Vega’s internals operate.” Inspecting the
state via the JavaScript console or viewing Vega’s dataflow graph
presents users with a mixture of state information, only a small
fraction of which is relevant to the debugging task at hand. The
extraneous system details complicate identification of relevant in-
formation, suggesting that it would be beneficial to strip internal
system information from the user’s view.

Participants explained that their needs centered on the relation-
ships between data and encodings expressed within their specifica-
tions. One participant explained that Vega “need[s] a way to exam-
ine internal variables... [and] to see the internals of the step-by-
step process.” Many participants additionally expressed the need to
understand “the structure of the data that Vega is actually using”
because data transformations may restructure the data or introduce
new attributes. One participant noted that “the easiest path to solve
[the specification error] was to just break into the [JavaScript] de-
bugger and see what state the data was in at various stages.”

Interactions further complicate the debugging process. Signals
parameterize data transformations and encodings, introducing ad-
ditional dependencies. While signals usefully abstract low-level in-
put events, some users find that this abstraction complicates reason-
ing about event propagation. As one participant stated, “debugging
reactivity is like a true true nightmare.” Our interviews and obser-
vations regarding interaction inform three debugging design goals.

Probe the state: At a given moment, the visualization is deter-
mined by signal values, data transformations, and encoding rules.
Users must be able to inspect the state of each of these components.

Visualize relationships: The state of one component often af-
fects the state of others — for example, signals can parameterize
encoding rules, or data transformations may affect scale domains.
Users must be able to identify dependencies between components.

Inspect state transitions: Input events trigger transitions from
state to state, and debugging faulty interactions requires under-
standing the causes and consequences of these transitions. To iden-
tify the source of an error, users must be able to inspect how values
propagate through the specification.

5. Visual Debugging Techniques

We now present the design of our visual debugging techniques for
reactive data visualization. In the formative studies, one participant
observed that “There are two possible errors. One is like a run-
time error... The other is you actually have a well-formed execution
and [the visualization] is not showing what you expect it to show.”
These debugging techniques focus on the latter, supporting the re-
finement of the user’s mental model through exploration of both
the data and state. To enable inspection of state and the behavior
of changes over time, we incorporate three elements: a timeline of
signals, in situ annotations of relevant encodings, and a dynamic
data table. In the following sections, we describe the design and
backing rationale for each of these debugging techniques.

5.1. The Signal Timeline and Replay

The timeline (Fig. 1f) lists every user-defined signal in specifica-
tion order. Signal updates are represented as colored cells in the

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

Jane Hoffswell, Arvind Satyanarayan, Jeffrey Heer / Visual Debugging Techniques for Reactive Data Visualization

(d)

Index Chart

Brushing

consistent interaction

Panning

mousemove drag mousemove

brush brush

(a) (c)

{ "name": "xMax", "init": 1.6,
 "streams": [{
 "type": "xDelta",
 "expr": "xMax + (xMax-xMin)*xDelta/800"
 }]
}

(b)

Figure 3: The overview, timeline, and signal annotations after performing interactions. (a) The overview provides insight into different
interaction patterns. (b) Stepping within a pulse allows users to see intermediate states of an interaction. The second scatterplot shows
a brush representing the new brush_start and old brush_end. (c) Dependencies are shown as red outlines on hover. (d) Signal
annotations overlay the visualization, with fill color encoding temporality: from darkest (past), through red (current), to lightest (future).

timeline, arranged into columns corresponding to reactive updates
(pulses). The current signal value is displayed on the far right;
mouse hover expands the contents and displays any scale trans-
forms used to define the signal. As users interact with the visu-
alization, signal values update and populate new columns in the
timeline. By default, cell widths are automatically adjusted so all
pulses are visible. An overview (Fig. 1e) summarizes pulse activity
over time, with bar heights encoding the number of signal updates
on a given pulse. The overview exposes patterns in the recorded in-
teraction (Fig. 3a), and brushing zooms the timeline to show only
pulses within the selected range.

Hovering over a cell displays a tooltip of the signal value in the
overview to enable rapid comparison. Hovering also exposes the
dependencies a signal update relies on — cells are outlined in red
to illustrate which dependency values are used, and icons are shown
beside dependency names in case the corresponding cell is not vis-
ible (Fig. 3c). Keyboard navigation allows users to move up and
down, to understand the propagation of signal values within the
same pulse (Fig. 3b), or left and right to identify a particular pulse
which exhibited faulty behavior. The selected cell is indicated with
dark green, with other signal values used by this state in light green.

Users can select a cell in the timeline to rewind the visualization
to an earlier state. Each time user interaction triggers a signal to
update, the system records the new value and pulse number. Re-
play is enabled by setting the signal values for the desired pulse
and re-rendering the visualization as if it were a new pulse in the
specification. During replay, interaction is disabled to prevent new
events from being added to the timeline mid-stream.

Rationale. The timeline provides users introspection into the
heart of the interaction logic — signals — and is designed to reify
the two-step reactive update process. As a result, pulses populate
the timeline from top to bottom, and hovering over a particular cell
can reveal if an older value was used for a dependency listed later.
Early prototypes took this one step further. Pulse propagation was
more salient as each cell in the timeline was marginally offset, pro-

ducing a “cascade” or “waterfall” effect. This design required more
space to encode the same information and made coarse navigation
difficult. It was only meaningful to navigate left or right (i.e., back-
wards or forwards in time). As a result, locating a faulty pulse re-
quired users to step through every intermediate state of other pulses.
In contrast, by condensing pulses into columns, users can quickly
move back and forth across the timeline and only deep dive into the
intermediate states of pulses of interest.

The timeline also maintains the level of abstraction provided
by signals. For example, the particular low-level input events
that trigger a reactive update are not identified. When such low-
level events are required for debugging erroneous event selectors,
users can define additional signals as needed that only capture the
event.type that triggers them, and track them via the time-
line and overview. Similarly, although Vega’s internal dataflow de-
pendency graph can be readily visualized, the timeline only sur-
faces dependency information for the particular cell a user hovers
over. Helper signals automatically generated by Vega are also hid-
den from view. Together, these reflect the findings of our forma-
tive study: users were overwhelmed by details of Vega’s execution
pipeline, and found them to be tangential to the debugging at hand.

5.2. In-Situ Annotations

When users pause interaction recording, either explicitly (Fig. 1d)
or by rewinding to an earlier state, a number of on-demand anno-
tations become available to inspect the visualization state in-situ.
The specification is analyzed to extract all scaled visual encoding
rules for each mark. Mousing over the visualization performs a hit
test against the underlying scenegraph to find an intersecting mark
or group. If a mark is not found, then the user’s cursor is over a
group’s background; the tooltip displays the cursor’s coordinates
relative to the group, along with any spatial scales used to encode
the group’s children (Fig. 1c). If a mark is found, its visual encod-
ing rules are shown in addition to the coordinates.

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

Jane Hoffswell, Arvind Satyanarayan, Jeffrey Heer / Visual Debugging Techniques for Reactive Data Visualization

1/12

5/12

1/12

3/12

1/12
5/12

ERROR

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

(a)

(b)

(c)
{
 "width": 650,
 "height": 300,
 "padding": "strict",

 "signals": [
 {
 "name": "indexDate",
 "init": {"expr": "time('Jan 1 2005')"},
 "streams": [{
 "type": "mousemove",
 "expr": "clamp(eventX(), 0, eventGroup('root').width)",
 "scale": {"name": "x", "invert": true}
 }]
 },
 {"name": "maxDate", "init": {"expr": "time('Mar 1 2010')"}}
],

 "data": [
 {
 "name": "stocks",
 "url": "data/stocks.csv",
 "format": {"type": "csv", "parse": {"price":"number", "date":"date"}}
 },
 {
 "name": "index",
 "source": "stocks",
 "transform": [{
 "type": "filter",
 "test": "datum.date + 1296000000 >= indexDate && datum.date - 1296000000 <= indexDate"
 }]
 },
 {
 "name": "indexified_stocks",
 "source": "stocks",
 "transform": [{
 "type": "lookup",
 "on": "index", "onKey": "symbol",
 "keys": ["symbol"], "as": ["index_term"],
 "default": {"price": 0}
 }, {
 "type": "formula",
 "field": "indexed_price",
 "expr": "datum.index_term.price > 0 ? (datum.price - datum.index_term.price)/datum.index_term.price : 0"
 }]
 }
],

 "scales": [
 {
 "name": "x",
 "type": "time",
 "domain": {"data": "stocks", "field": "date"},
 "range": "width"
 },
 {
 "name": "y",
 "type": "linear",
 "domain": {"data": "indexified_stocks", "field": "indexed_price"},
 "range": "height",
 "nice": true
 },
 {
 "name": "color",
 "type": "ordinal",
 "domain": {"data": "stocks", "field": "symbol"},
 "range": "category10"
 }
],
 "axes": [
 {"type": "y", "scale": "y", "grid": true, "layer": "back", "format": "%"}
],
 "marks": [
 {
 "type": "group",
 "from": {
 "data": "indexified_stocks",
 "transform": [{"type": "facet", "groupby": ["symbol"]}]
 },
 "marks": [
 {
 "type": "line",
 "properties": {
 "update": {
 "x": {"scale": "x", "field": "date"},
 "y": {"scale": "y", "field": "indexed_price"},
 "stroke": {"scale": "color", "field": "symbol"},
 "strokeWidth": {"value": 2}
 }
 }
 },
 {
 "type": "text",
 "from": {
 "transform": [{"type": "filter", "test": "datum.date == maxDate"}]
 },
 "properties": {
 "update": {
 "x": {"scale": "x", "field": "date", "offset": 2},
 "y": {"scale": "y", "field": "indexed_price"},
 "fill": {"scale": "color", "field": "symbol"},
 "text": {"field": "symbol"},
 "baseline": {"value": "middle"}
 }
 }
 }
]
 },
 {
 "type":"rule",
 "properties": {
 "update": {
 "x": {"field": {"group": "x"}},
 "x2": {"field": {"group": "width"}},
 "y": {"scale": "y", "value": 0},
 "stroke": {"value": "black"},
 "strokeWidth": {"value": 1}
 }
 }
 },
 {
 "type":"rule",
 "properties": {
 "update": {
 "x": {"scale": "x", "signal": "indexDate"},
 "y": {"value": 0},
 "y2": {"field": {"group": "height"}},
 "stroke": {"value": "red"}
 }
 }
 },
 {
 "type":"text",
 "properties": {
 "update": {
 "x": {"scale": "x", "signal": "indexDate"},
 "y2": {"field": {"group": "height"}, "offset": 15},
 "align": {"value": "center"},
 "text": {"template": "{{indexDate | time: '%b %Y'}}"},
 "fill": {"value": "red"}
 }
 }
 }
]
}

...
"signals": [
 {
 "name": "indexDate",
 "init": {"expr": "time('Jan 1 2005')"},
 "streams": [{
 "type": "mousemove",
 "expr": "clamp(eventX(), 0, eventGroup('root').width)",
 "scale": {"name": "x", "invert": true}
 }]
 }
],

"data": [
 {"name": "stocks", "url": "data/stocks.csv"},
 {
 "name": "index", "source": "stocks",
 "transform": [{
 "type": "filter",
 "test": "datum.date + 1296000000 >= indexDate && datum.date - 1296000000 <= indexDate"
 }]
 },
 {
 "name": "indexified_stocks", "source": "stocks",
 "transform": [{
 "type": "lookup",
 "on": "index", "onKey": "symbol",
 "keys": ["symbol"], "as": ["index_term"],
 "default": {"price": 0}
 }, {
 "type": "formula",
 "field": "indexed_price",
 "expr": "datum.index_term.price > 0 ? (datum.price-datum.index_term.price)/datum.index_term.price : 0"
 }]
 }
],
...

Figure 4: (a) An index chart interactively normalizes stock price time-series, (b) but a data transformation error zeros out the indexed price,
flatlining the chart. (c) An excerpt of the specification shows the distribution of lines identified by participants as the source of the error.

Mousing over a signal value in the timeline that duck-types to co-
ordinates (i.e., an object with x and y properties), displays all sig-
nal updates as signal annotations on the visualization. The current
point is denoted with a white stroke, and the fill color encodes tem-
porality — older points are darker and lighter points occur further
forward in the future (Fig. 3d). By default, signal annotations are
only shown when hovering over the timeline; however, users can
choose to have them drawn in real-time as interactions are recorded.

Rationale. Scale transforms are a common visual encoding oper-
ation, but can grow complex under a nested scenegraph model such
as Vega’s. For example, scales defined within nested group marks
can shadow scales with the same name at higher levels. General-
izing an interaction technique requires invoking an inverse scale
transform, to move from pixel to data values, but identifying the
correct scale to use can be error-prone. Vega’s scenegraph can be
easily visualized but would still require a user to manually map its
tree structure to the resultant visualization. Instead, our in-situ an-
notations make inspection of the scenegraph a direct manipulation
operation. So as not to conflict with user-defined interactions, these
annotations only appear when interaction recording is paused.

5.3. Dynamic Data Tables

Dynamic tables (Fig. 1h) display each specification-defined dataset
and its attributes. The goal of the data tables is to give users a rapid,
high-level sense of the backing data. Tables initially show only the
first ten rows, which can be extended on-demand. This sample data
allows users to review the attributes of each dataset and histograms
summarize the distribution of each attribute at the given timestamp.
Selecting a bar highlights corresponding values in the data table.

The data tables update automatically as the user interacts with
the visualization to immediately depict changes in the distributions
of data properties. While inspecting the table, a time series of the
variability of each data property is shown in the overview (Fig. 1g).
Mousing over the name of an attribute shows only the correspond-
ing time series. The variability is calculated as follows, where bin′i
is the number of values in bin i of the histogram at the current state
and bini is for the previous state: ∑i∈bins |bin′i−bini|. The variabil-
ity for static attributes is a flat line along the bottom of the overview.

Rationale. In the formative study, one participant noted that

users “have this expectation about data... [that] is kind of unspo-
ken and pretty hard to debug.” Interactive visualization undoubt-
edly exacerbates this problem, as signals can further parameterize
data transformations. By displaying the output data values of each
dataset (i.e., after all transforms have been evaluated), our dynamic
data tables narrow the gulf of evaluation [HHN85]. Moreover, the
overview is augmented with dataset variability information to help
users map the effect of signal updates to changes in the datasets.
The current calculation for the variability detects large shifts in the
distribution of data, instead of individual property values, in order
to better highlight surprising changes. As with the timeline, datasets
internal to Vega are hidden from view.

5.4. Linked Highlighting of the Specification

Users can select the name of a signal or data property in order to
highlight all occurrences of that name in the specification in order
to view the behavior in context. If the specification is not currently
visible, it will be displayed alongside the current view. This linking
allows users to rapidly trace variables to the original specification.

6. Evaluation: Debugging Faulty Visualizations

We conducted a study of how first-time Vega users utilize these
debugging techniques to assess faulty specifications. Across a set of
real-world errors, we examined participants’ debugging strategies
and their interactions with our visual debugging techniques.

Participants. We recruited 12 first-time Vega users (8 male, 4
female), all with prior experience analyzing data and creating visu-
alizations. Participant ages ranged from 23 to 42 (mean 27.5, s.d.
5.14). All were either graduate (11) or postdoctoral (1) students at
the University of Washington. Each study session lasted about 90
minutes; each participant received a $15 gift card as compensation.

Protocol. Prior to the study, we asked each participant to review
the Vega beginner’s tutorial†. We began the study with an additional
Reactive Vega tutorial, including an introduction of the visual de-
bugging techniques. Participants were provided with a reference

† https://github.com/vega/vega/wiki/Tutorial

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

https://github.com/vega/vega/wiki/Tutorial

Jane Hoffswell, Arvind Satyanarayan, Jeffrey Heer / Visual Debugging Techniques for Reactive Data Visualization

3/12

1/12

2/12

1/12

6/12

8/12

7/12

6/12

1/12

ERROR

(b)

(c)

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

(a) (d)
{
 "width": 800,
 "height": 500,
 "padding": {"left": 45, "right": 65, "top": 50, "bottom": 50},
 "data": [
 {
 "name": "points",
 "url": "data/points.json"
 }
],
 "signals": [
 {
 "name": "xDelta",
 "init": 0,
 "streams": [
 {"type": "mousedown", "expr": "0"},
 {"type": "[mousedown, mouseup] > mousemove", "expr": "xCoord - eventX()"}
]
 },
 {
 "name": "xCoord",
 "init": 0,
 "streams": [
 {"type": "mousedown", "expr": "eventX()"},
 {"type": "[mousedown, mouseup] > mousemove", "expr": "eventX()"}
]
 },
 {
 "name": "yDelta",
 "init": 0,
 "streams": [
 {"type": "mousedown", "expr": "0"},
 {"type": "[mousedown, mouseup] > mousemove", "expr": "eventY() - yCoord"}
]
 },
 {
 "name": "yCoord",
 "init": 0,
 "streams": [
 {"type": "mousedown", "expr": "eventY()"},
 {"type": "[mousedown, mouseup] > mousemove", "expr": "eventY()"}
]
 },
 {
 "name": "xMin",
 "init": -1.6,
 "streams": [
 {"type": "xDelta", "expr": "xMin + (xMax-xMin)*xDelta/800"}
]
 },
 {
 "name": "xMax",
 "init": 1.6,
 "streams": [
 {"type": "xDelta", "expr": "xMax + (xMax-xMin)*xDelta/800"}
]
 },
 {
 "name": "yMin",
 "init": -1,
 "streams": [
 {"type": "yDelta", "expr": "yMin + (yMax-yMin)*yDelta/500"}
]
 },
 {
 "name": "yMax",
 "init": 1,
 "streams": [
 {"type": "yDelta", "expr": "yMax + (yMax-yMin)*yDelta/500"}
]
 },
 {
 "name": "pointSize",
 "init": 30,
 "streams": [
 {"type": "xMin", "expr": "min(max(60/(xMax-xMin), 30),100)"}
]
 }
],
 "scales": [
 {
 "name": "x",
 "type": "linear",
 "range": "width", "zero": false,
 "domainMin": {"signal": "xMin"},
 "domainMax": {"signal": "xMax"}
 },
 {
 "name": "y",
 "type": "linear",
 "range": "height", "zero": false,
 "domainMin": {"signal": "yMin"},
 "domainMax": {"signal": "yMax"}
 }
],
 "axes": [
 {"type": "x", "scale": "x", "grid": true, "layer": "back", "properties": {
 "labels": {
 "fontSize": {"value": 14}
 }
 }},
 {"type": "y", "scale": "y", "grid": true, "layer": "back", "properties": {
 "labels": {
 "fontSize": {"value": 14}
 }
 }}
],
 "marks": [
 {
 "type": "group",
 "properties": {
 "enter": {
 "x": {"value": 0},
 "width": {"value": 800},
 "y": {"value": 0},
 "height": {"value": 500},
 "clip": {"value": true}
 }
 },
 "marks": [
 {
 "type": "symbol",
 "from": {"data": "points"},
 "properties": {
 "update": {
 "x": {"scale": "x", "field": "x"},
 "y": {"scale": "y", "field": "y"},
 "fill": {"value": "steelblue"},
 "size": {"signal": "pointSize"}
 }
 }
 }
]
 }
]
}

...
"signals": [
 { "name": "xDelta", "init": 0,
 "streams": [
 {"type": "mousedown", "expr": "0"},
 {"type": "[mousedown, mouseup] > mousemove", "expr": "xCoord - eventX()"}
]
 },
 { "name": "xCoord", "init": 0,
 "streams": [
 {"type": "mousedown", "expr": "eventX()"},
 {"type": "[mousedown, mouseup] > mousemove", "expr": "eventX()"}
]
 },
 { "name": "yDelta", "init": 0,
 "streams": [
 {"type": "mousedown", "expr": "0"},
 {"type": "[mousedown, mouseup] > mousemove", "expr": "eventY() - yCoord"}
]
 },
 { "name": "yCoord", "init": 0,
 "streams": [
 {"type": "mousedown", "expr": "eventY()"},
 {"type": "[mousedown, mouseup] > mousemove", "expr": "eventY()"}
]
 },
 { "name": "xMin", "init": -1.6,
 "streams": [{"type": "xDelta", "expr": "xMin + (xMax-xMin)*xDelta/800"}]
 },
 { "name": "xMax", "init": 1.6,
 "streams": [{"type": "xDelta", "expr": "xMax + (xMax-xMin)*xDelta/800"}]
 },
 { "name": "yMin", "init": -1,
 "streams": [{"type": "yDelta", "expr": "yMin + (yMax-yMin)*yDelta/500"}]
 },
 { "name": "yMax", "init": 1,
 "streams": [{"type": "yDelta", "expr": "yMax + (yMax-yMin)*yDelta/500"}]
 },
 { "name": "pointSize", "init": 30,
 "streams": [{"type": "xMin", "expr": "min(max(60/(xMax-xMin), 30),100)"}]
 }
],
...

Figure 5: (a) As the user pans the visualization, the axes stretch and distort the plot. This occurs due to an interdependency in the definition
of the signals responsible for setting the range of the scale. (b) The min signal uses the old values of both min and max to compute its new
value, whereas (c) the max signal uses the new min value and the old max value, thus causing the difference to drift. (d) An excerpt of the
specification indicates the problematic lines and shows the distribution of lines identified by participants as the source of the error.

sheet containing the names and descriptions of each technique (in-
cluded in supplementary material). At the start of each task, we ori-
ented participants with a brief explanation of the visualization and
its intended functionality. Participants could then view the spec-
ification and interact with the visualization and debugging tech-
niques. Participants were asked to diagnose the specific bug and
identify one or more lines in the specification that cause the error.

Participants completed three tasks, each with an unfamiliar spec-
ification. We used existing specifications rather than having partic-
ipants craft new visualizations from scratch to focus the evalua-
tion on known debugging challenges. Each specification was based
on a real-world error encountered by Vega users and developers.
The selected errors represented a range of breakdowns, covering
data transformation, interaction logic, and visual encodings, re-
spectively. Tasks were ordered by increasing conceptual difficulty
and emphasize different parts of the system. Detailed descriptions
of each task are provided in the following sections.

The decision to use existing specifications ensured that each par-
ticipant encountered the same set of errors and facilitated com-
parison across participants. Participants’ unfamiliarity with Vega
provided a conservative test of our debugging techniques, as par-
ticipants could not rely on prior experience to inform the debug-
ging process. As described in §4, the previous debugging strategy
required user familiarity with the Vega system internals, which is
not necessary when authoring visualizations. Given that most users
lack the necessary familiarity to understand the system internals,
the previous debugging process is not representative of the behavior
of real-world users and is not a fair comparison for our expected use
case. Manual exploration of the internal Vega structure is more low
level than the abstraction used when writing specifications and thus
less fit for general debugging scenarios. Future work is required to
assess how these visual debugging techniques will be employed in
real-world development processes by experienced users.

Data Collection. We used a think-aloud protocol throughout the
study. Audio and screen recordings were captured for later review.
At the end of each task, participants completed a brief survey in
which they identified faulty lines of the specification and explained
the reasoning for their choice. Participants additionally provided
Likert ratings of the usefulness of each debugging technique. At
the end of the study, participants ranked the debugging features and
provided written impressions of the debugging experience.

Analysis. We assessed participant accuracy by checking if they
correctly identified lines in the specification related to the error. We
examined the average rating of each technique for each task and
assessed the utility of techniques for different types of errors.

6.1. Data Transformation Errors: Index Chart

An index chart of stock prices renormalizes the data relative to a
mouse-selected time point. At certain dates in the visualization,
each line flatlines due to an erroneous data transformation that in-
correctly filters the backing dataset (Fig. 4b). The filter uses a con-
stant to specify a range with the same month and year as the index
point, but the constant incorrectly excludes some points due to a
slight time offset between the data and index point. The error can
be resolved by using Vega’s date support to compare the month and
year. Participants had 15 minutes for this task.

Five participants (42%) correctly identified the exact line causing
the error. All remaining participants correctly identified dependent
lines that are corrupted by the faulty data filter (Fig. 4c). Partic-
ipants identified nine distinct lines from the specification (out of
145). Participants started by identifying dates at which the visual-
ization flatlines. By replaying to those points in the timeline, all
participants verified that the signal value for the index point was
capturing a logical date. Participants switched to the data table to
compare attributes across states and observed that during the er-

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

Jane Hoffswell, Arvind Satyanarayan, Jeffrey Heer / Visual Debugging Techniques for Reactive Data Visualization

1/12

1/12

2/12

1/12

2/12

3/12

7/12

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

...
139
140
141
...
150
151
152
153
154
155
156
157
158
159
160
161
...

(d)(c)(a) (b)
{
 "width": 175,
 "height": 175,

 "data": [{
 "name": "iris",
 "url": "data/iris.json"
 }],

 "signals": [
 {"name": "w", "init": 175},
 {"name": "h", "init": 175},
 {
 "name": "scatterplot",
 "init": "{}",
 "streams": [
 {
 "type": "@scatterplot:mousedown",
 "expr": "eventGroup('scatterplot')"
 }
]
 },
 {
 "name": "brush_start",
 "init": {"x": 0, "y": 0},
 "streams": [{
 "type": "mousedown",
 "expr": "{x: clamp(eventX(), 0, w), y: clamp(eventY(), 0, h)}"
 }]
 },
 {
 "name": "brush_end",
 "init": {"x": 0, "y": 0},
 "streams": [{
 "type": "mousedown, [mousedown, window:mouseup] > window:mousemove",
 "expr": "{x: clamp(eventX(), 0, w), y: clamp(eventY(), 0, h)}"
 }]
 }
],

 "predicates": [
 {
 "name": "xRange",
 "type": "in",
 "item": {"arg": "x"},
 "range": [{"signal": "brush_start.x"}, {"signal": "brush_end.x"}],
 "scale": {
 "name": "x",
 "invert": true,
 "scope": {"signal": "scatterplot"}
 }
 },
 {
 "name": "yRange",
 "type": "in",
 "item": {"arg": "y"},
 "range": [{"signal": "brush_start.y"}, {"signal": "brush_end.y"}],
 "scale": {
 "name": "y",
 "invert": true,
 "scope": {"signal": "scatterplot"}
 }
 },
 {
 "name": "inRange",
 "type": "&&",
 "operands": [{"predicate": "xRange"}, {"predicate": "yRange"}]
 }
],

 "marks": [
 {
 "type": "group",
 "name": "scatterplot",

 "properties": {
 "enter": {
 "x": {"value": 0},
 "y": {"value": 0},
 "width": {"value": 175},
 "height": {"value": 175}
 }
 },

 "scales": [
 {
 "name": "x",
 "type": "linear",
 "domain": {"data": "iris", "field": "sepalWidth"},
 "range": "width",
 "zero": false
 },
 {
 "name": "y",
 "type": "linear",
 "domain": {"data": "iris", "field": "petalLength"},
 "range": "height",
 "nice": true,
 "zero": false
 },
 {
 "name": "c",
 "type": "ordinal",
 "domain": {"data": "iris", "field": "species"},
 "range": "category10"
 }
],

 "legends": [
 {
 "fill": "c",
 "title": "Species",
 "offset": 10,
 "properties": {
 "symbols": {
 "fillOpacity": {"value": 0.5},
 "stroke": {"value": "transparent"}
 }
 }
 }
],

 "axes": [
 {"type": "x", "scale": "x", "offset": 5, "ticks": 5, "title": "Sepal Width"},
 {"type": "y", "scale": "y", "offset": 5, "ticks": 5, "title": "Petal Length"}
],

 "marks": [
 {
 "type": "rect",
 "properties": {
 "enter": {
 "fill": {"value": "grey"},
 "fillOpacity": {"value": 0.2}
 },
 "update": {
 "x": {"signal": "brush_start.x"},
 "x2": {"signal": "brush_end.x"},
 "y": {"signal": "brush_start.y"},
 "y2": {"signal": "brush_end.y"}
 }
 }
 },
 {
 "type": "symbol",
 "from": {"data": "iris"},
 "properties": {
 "enter": {
 "x": {"scale": "x", "field": "sepalWidth"},
 "y": {"scale": "y", "field": "petalLength"},
 "fill": {"scale": "c", "field": "species"},
 "size": {"value": 150},
 "fillOpacity": {"value": 0.4}
 },
 "update": {
 "fill": {
 "rule": [
 {
 "predicate": {
 "name": "inRange",
 "x": {"field": "sepalWidth"},
 "y": {"field": "petalLength"}
 },
 "scale": "c",
 "field": "species"
 },
 {"value": "grey"}
]
 }
 }
 }
 }
]
 }
]
}

ERROR
...
"signals": [...,
 { "name": "scatterplot",
 "init": "{}",
 "streams": [{
 "type": "@scatterplot:mousedown",
 "expr": "eventGroup('scatterplot')"
 }]
 },
 { "name": "brush_start",
 "init": {"x": 0, "y": 0},
 "streams": [{
 "type": "mousedown",
 "expr": "{x: clamp(eventX(), 0, w), y: clamp(eventY(), 0, h)}"
 }]
 },
 { "name": "brush_end",
 "init": {"x": 0, "y": 0},
 "streams": [{
 "type": "mousedown, [mousedown, window:mouseup] > window:mousemove",
 "expr": "{x: clamp(eventX(), 0, w), y: clamp(eventY(), 0, h)}"
 }]
 }
],
...
"marks": [...,
 {
 "type": "symbol",
 "from": {"data": "iris"},
 "properties": {
 "enter": {...},
 "update": {
 "fill": { "rule": [
 {
 "predicate": {
 "name": "inRange",
 "x": {"field": "sepalWidth"},
 "y": {"field": "petalLength"}
 },
 "scale": "c", "field": "species"
 },
 {"value": "grey"}
]}
...

Figure 6: Scale definitions are extracted from the scatterplot signal for the color encoding. The signal is initialized as an empty object,
causing (a) the brush to display but leaving the points grey. When a point is clicked, (b) scatterplot is defined and (c) the brush works
correctly for all future interactions. (d) An excerpt of the specification displays the distribution of lines identified as the source of the error.

ror condition, the indexed_pricewas always zero. Participants
linked back to the specification to identify dependencies and select
candidate lines. Participants rated replay and the data table most
highly (Fig. 7). The data table is essential for identifying corrupted
data values from the faulty filter transformation. Replay is crucial
for isolating the error states of the visualization.

6.2. Interaction Logic Errors: Panning a Scatterplot

A scatterplot supports panning via mouse drag. Over repeated pan-
ning actions, the aspect ratio of the plot distorts (Fig. 5a). Panning
is implemented as a set of signals defining the minimum and maxi-
mum domain values for each axis. The error occurs due to a mutual
dependency between these signals: the minimum signal uses the
old minimum and maximum to compute the new value (Fig. 5b),
whereas the maximum signal uses the new minimum value and old
maximum value (Fig. 5c). To resolve the error requires a re-design
of the specification to remove the mutual dependency in the inter-
action logic. Participants had 20 minutes for this task.

Eight participants (67%) correctly identified the mini-
mum/maximum signals as the source of the error. The remaining
participants identified either immediate upstream or downstream
dependencies of the erroneous signals (Fig. 5d). Participants
identified nine distinct lines from the specification (out of 136).
Participants began debugging by panning the plot and forming
hypotheses about the behavior of the error. In testing each
hypothesis, participants often reset the timeline to only view
the most recent signal updates. Once participants observed the
distortion, they used the timeline to compare the signal behaviors.
To assess the relationships between signals, some participants
used the dependency markers to determine how the signal values
propagated whereas others attempted to glean these relationships
from the specification. Due to participants’ lack of familiarity
with the Vega syntax, reading the specification alone in the short

time frame was a challenge. Participants noticed that many signals
computed the difference between the minimum and maximum to
represent the visible range, and noted that the size of this range
should not be changing during the panning interaction. Participants
thus identified signals utilizing this computation as candidate lines.
Users rated the dependencies and timeline most highly for this
task, as they revealed the relationships between signal values and
the underlying interaction logic (Fig. 7).

6.3. Visual Encoding Errors: Brushing a Scatterplot

A scatterplot enables brushing to highlight points: points within the
brush extents should have their fill color updated. The pixel val-
ues of the brush extents are run through scale inversions to deter-
mine a selection over data attributes. However, the brushing interac-
tion does not always highlight points when the visualization is first
parsed (Fig. 6a). The error occurs because the scatterplot sig-
nal (which represents a group mark containing the plot) is needed
to find the appropriate scale to invert the pixel-level brush extents,
but is initialized as an empty object that is only set on mouse-
down events. However, these events do not correctly propagate if
the user performs a mousedown on the background, as the en-
closing group element has no fill color (an idiosyncrasy inherited
from Scalable Vector Graphics). If the mousedown occurs over
any of the plotting symbols, which do have a fill color, the event
fires and scatterplot is accordingly set (Fig. 6b), enabling all
future brushing actions to work appropriately (Fig. 6c). This exam-
ple is a simplification of a breakdown that can occur in scatterplot
matrices. Participants had 15 minutes for this task.

Nine participants (75%) correctly identified the scatterplot
signal as the source of the error (Fig. 6d). The remaining partici-
pants incorrectly selected lines associated with the brush signal and
the fill color encoding. Participants identified eleven distinct lines
from the specification (out of 176). Two participants implemented

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

Jane Hoffswell, Arvind Satyanarayan, Jeffrey Heer / Visual Debugging Techniques for Reactive Data Visualization

Figure 7: Average ratings for each debugging technique, by task
(shape) and overall (lines), with one standard deviation (gray).

a partial fix by changing the definition of the scatterplot signal to
update on mouseover instead of mousedown. While this solu-
tion causes the brush to correctly color points, it does not correctly
address the problem of event propagation described above.

Participants began by attempting to reliably reproduce the erratic
brushing behavior. Once the conditions of the behavior were deter-
mined, participants examined the timeline to compare the signals
across working and faulty brushing runs. Participants observed that
when a mark was selected, the scatterplot signal was set in the time-
line to the appropriate scope. By selecting the scatterplot signal in
the timeline, users highlighted its use in the specification in order
to identify the corresponding specification lines. Consequently, the
timeline received the highest ratings for this task (Fig. 7).

7. Discussion and Future Work

For each task, the majority of participants were successful in either
precisely identifying erroneous specification lines or detecting lines
directly related to the error. Despite being first-time users, partici-
pants accurately identified erroneous lines for faulty panning (67%)
and brushing (75%) interactions. Three participants even attempted
partial fixes (1 panning, 2 brushing) — an encouraging result given
their lack of familiarity with Vega. In only 15-20 minutes, these
participants were able to observe, diagnose, and start experiment-
ing with solutions to the error in an unfamiliar specification in an
unfamiliar environment. For the index chart, 42% of participants
correctly identified the problematic line, with the remaining partic-
ipants identifying dependent lines corrupted by the error. As partic-
ipants used our debugging techniques to conceptually home in on
an unfamiliar problem, we consider this a promising result.

Figure 7 plots participant ratings for each debugging technique.
Of particular note is that the utility of each technique is highly de-
pendent on the type of error — for example, dynamic tables rated
highly for the index chart, which featured a data transformation
error, whereas the timeline was rated poorly as the interaction re-
quired only a single signal. In order to understand the complex de-
pendencies within the panning example, the dependencies on the
timeline were much more salient. On average, the combination of
timeline and replay techniques were deemed universally useful for
assessing program state and observing relevant changes (Fig. 7).
One participant noted that “the combination of the timeline, replay,
automatic text highlight, and dependencies makes for a pretty use-
ful and smooth debugging experience.”

The remaining techniques (overview, tooltip, attribute variabil-
ity, and signal annotations) were rated lower on average as each

technique was less effective at surfacing information relevant to
the debugging tasks. The tooltip had the largest spread of average
ratings, and was particularly useful in debugging the index chart by
allowing users to inspect the encoding of the broken state and track
the underlying error to the backing dataset. The attribute variabil-
ity was designed to support quick identification of data changes,
but was often overlooked by participants. One user noted that their
low rating suggests that the system should “promote its appearance
more.” Currently, users must explicitly select the debugging tech-
nique they wish to use, which requires them to know what infor-
mation would be most useful. Further development of these tech-
niques might examine how to automatically surface relevant de-
tails with less user intervention. Additional static analysis, or new
higher-level specifications, could help the system better understand
the semantics of interactions (e.g., do signals define point or range
selections?) and automatically surface appropriate techniques.

The replay technique currently updates the visualization by set-
ting the signal values of the previous state and re-rendering the
visualization as if it were a new pulse in the execution. How-
ever, this functionality assumes a consistent definition of the set
of signals, limiting support for hot-swapping changes in the speci-
fication. Future work should examine what additional information
should be recorded to support replay of interactions across specifi-
cation changes. Though low-level input events are abstracted into
signal definitions for easier debugging by users, such events may be
necessary to support replay when signal definitions have changed.

In the evaluation, one participant explained that “I would have
loved a way to use the visualization essentially as an editor to mod-
ify the specification (and then see those changes update the viz in
real time).” Lyra [SH14] provides an interactive environment for
visualization design via direct manipulation, but does not yet sup-
port authoring interactions. Our timeline visualizes the propagation
of events to the interaction logic, but may be too low level for an
interactive development environment like Lyra. By shifting the fo-
cus of the signal annotations from a summary of all events, to an
indication of the current state, the annotations could support bet-
ter debugging of interaction sequences in-situ. Replay could then
support playback and refinement of interaction sequences to enable
authoring of interactions in an interactive design environment.

Interaction techniques are crucial for exploring and understand-
ing visualizations, but are often difficult to author and debug.
Vega’s reactive semantics encapsulate the bulk of the interaction
logic, providing a meaningful entry point for the debugging pro-
cess. We contribute a set of visual debugging techniques that allow
users to probe the state, visualize relationships, and inspect state
transitions over time. The three tasks in the user evaluation demon-
strate data transformation, interaction logic, and encoding errors
that arise during the design of interactive visualizations. The evalu-
ation demonstrates how the proposed visual debugging techniques
can be used by novice users to accurately identify and understand
these errors and better support their debugging needs.

Acknowledgements

This work was supported by Intel Big Data ISTC, the Moore Foun-
dation, DARPA XDATA, and a SAP Stanford Graduate Fellowship.

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

Jane Hoffswell, Arvind Satyanarayan, Jeffrey Heer / Visual Debugging Techniques for Reactive Data Visualization

References

[BBKE13] BURG B., BAILEY R., KO A. J., ERNST M. D.: Interac-
tive record/replay for web application debugging. In Proceedings of the
26th annual ACM symposium on User interface software and technology
(2013), ACM, pp. 473–484. 2

[BCC∗13] BAINOMUGISHA E., CARRETON A. L., CUTSEM T. V.,
MOSTINCKX S., MEUTER W. D.: A survey on reactive programming.
ACM Computing Surveys (CSUR) 45, 4 (2013), 52. 2

[BH09] BOSTOCK M., HEER J.: Protovis: A graphical toolkit for visu-
alization. IEEE Trans. Visualization & Comp. Graphics 15, 6 (2009),
1121–1128. 3

[BOH11] BOSTOCK M., OGIEVETSKY V., HEER J.: D3: Data-Driven
Documents. IEEE Trans. Visualization & Comp. Graphics 17, 12 (2011),
2301–2309. 3

[CC13] CZAPLICKI E., CHONG S.: Asynchronous functional reactive
programming for guis. In Proc. ACM SIGPLAN (2013), ACM, pp. 411–
422. 2

[CL08] COTTAM J., LUMSDAINE A.: Stencil: a conceptual model for
representation and interaction. In Information Visualisation (2008),
IEEE, pp. 51–56. 2

[DFS02] DEMETRESCU C., FINOCCHI I., STASKO J. T.: Specifying al-
gorithm visualizations: Interesting events or state mapping? In Software
Visualization. Springer, 2002, pp. 16–30. 3

[GKM82] GRAHAM S. L., KESSLER P. B., MCKUSICK M. K.: Gprof:
A call graph execution profiler. In ACM Sigplan Notices (1982), vol. 17,
ACM, pp. 120–126. 3

[Goo15a] GOOGLE: JavaScript Memory Profiling. https:
//developer.chrome.com/devtools/docs/
javascript-memory-profiling, December 2015. 3

[Goo15b] GOOGLE: Profiling JavaScript Performance.
https://developer.chrome.com/devtools/docs/
cpu-profiling, December 2015. 3

[Gre15] GREGG B.: Flame Graphs. http://www.brendangregg.
com/flamegraphs.html, December 2015. 3

[Guo13] GUO P. J.: Online Python Tutor: Embeddable web-based pro-
gram visualization for CS education. In Proceedings of the 44th ACM
Technical Symposium on Computer Science Education (New York, NY,
USA, 2013), SIGCSE ’13, ACM, pp. 579–584. 2

[HHN85] HUTCHINS E. L., HOLLAN J. D., NORMAN D. A.: Direct
manipulation interfaces. Human-Computer Interaction 1, 4 (1985), 311–
338. 6

[HS12] HEER J., SHNEIDERMAN B.: Interactive dynamics for visual
analysis. Queue 10, 2 (2012), 30. 1

[KL15] KELLEHER C., LEVKOWITZ H.: Reactive data visualizations. In
IS&T/SPIE Electronic Imaging (2015), International Society for Optics
and Photonics, pp. 93970N–93970N. 2

[KM04] KO A. J., MYERS B. A.: Designing the whyline: a debugging
interface for asking questions about program behavior. In Proceedings of
the SIGCHI conference on Human factors in computing systems (2004),
ACM, pp. 151–158. 2

[LBM14] LIEBER T., BRANDT J. R., MILLER R. C.: Addressing mis-
conceptions about code with always-on programming visualizations. In
Proceedings of the 32nd annual ACM conference on Human factors in
computing systems (2014), ACM, pp. 2481–2490. 2

[MGB∗09] MEYEROVICH L. A., GUHA A., BASKIN J., COOPER
G. H., GREENBERG M., BROMFIELD A., KRISHNAMURTHI S.: Flap-
jax: a programming language for ajax applications. In ACM SIGPLAN
Notices (2009), vol. 44, ACM, pp. 1–20. 2

[MHHH15] MORITZ D., HALPERIN D., HOWE B., HEER J.: Perfopti-
con: Visual query analysis for distributed databases. Computer Graphics
Forum (Proc. EuroVis) 34, 3 (2015). 3

[Mye91] MYERS B. A.: Separating application code from toolkits: elim-
inating the spaghetti of call-backs. In Proc. ACM UIST (1991), ACM,
pp. 211–220. 1

[OM09] ONEY S., MYERS B.: Firecrystal: Understanding interactive be-
haviors in dynamic web pages. In Visual Languages and Human-Centric
Computing, 2009. VL/HCC 2009. IEEE Symposium on (2009), IEEE,
pp. 105–108. 2

[PSCO09] PIKE W. A., STASKO J., CHANG R., O’CONNELL T. A.:
The science of interaction. Information Visualization 8, 4 (2009), 263–
274. 1

[SH14] SATYANARAYAN A., HEER J.: Lyra: An interactive visualization
design environment. Computer Graphics Forum (Proc. EuroVis) (2014).
9

[SRHH15] SATYANARAYAN A., RUSSELL R., HOFFSWELL J., HEER
J.: Reactive vega: A streaming dataflow architecture for declarative in-
teractive visualization. IEEE Trans. Visualization & Comp. Graphics
(Proc. InfoVis) (2015). 1, 3

[SWH14] SATYANARAYAN A., WONGSUPHASAWAT K., HEER J.:
Declarative interaction design for data visualization. In ACM User Inter-
face Software & Technology (UIST) (2014). 1, 2, 3

[Vic12] VICTOR B.: Inventing on Principle. https://vimeo.com/
36579366, January 2012. 2

[WTH02] WAN Z., TAHA W., HUDAK P.: Event-driven FRP. In Practi-
cal Aspects of Declarative Languages. Springer, 2002, pp. 155–172. 1,
2, 3

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

https://developer.chrome.com/devtools/docs/javascript-memory-profiling
https://developer.chrome.com/devtools/docs/javascript-memory-profiling
https://developer.chrome.com/devtools/docs/javascript-memory-profiling
https://developer.chrome.com/devtools/docs/cpu-profiling
https://developer.chrome.com/devtools/docs/cpu-profiling
http://www.brendangregg.com/flamegraphs.html
http://www.brendangregg.com/flamegraphs.html
https://vimeo.com/36579366
https://vimeo.com/36579366

