
Reactive Vega: A Streaming Dataflow Architecture
for Declarative Interactive Visualization

Arvind Satyanarayan, Ryan Russell, Jane Hoffswell, and Jeffrey Heer

Scene Graph Construction

Interaction Handling

Input Data Processing

TextLine

extract
index point

Input

Filter

Collector

Output

Root

stocks.json

Input

Output Derive

Derive

indexed
stocks.json

Input

Zip

Formula

Collector

Output

DeriveGroup
Builder

Group
Builder

Group
Evaluator

Group
BounderCollectorGroup

BounderRenderer

Group
Evaluator

Input

Output

Derive Input

Filter

Collector

Output

Builder

Evaluator

Bounder

Builder

Evaluator

Bounder

Collector

X
Scale

Y
Scale

Color
Scale

Line
Builders

Text
Builders

Builder

Evaluator

Bounder

index
date

xPos

mouse
move

Event
Selector

Input

Facet

Collector

Output

Input

Output

Derive Input

Filter

Collector

Output

Builder

Evaluator

Bounder

Builder

Evaluator

Bounder

Input

Output

Derive Input

Filter

Collector

Output

Builder

Evaluator

Bounder

Builder

Evaluator

Bounder

Internal

External

Data Source

Fig. 1. The Reactive Vega dataflow graph created from a declarative specification for a interactive index chart of streaming financial
data. As streaming data arrives from the Yahoo! Finance API, or as a user moves their mouse pointer across the chart, an update
cycle propagates through the graph and triggers an efficient update and re-render of the visualization.

Abstract—We present Reactive Vega, a system architecture that provides the first robust and comprehensive treatment of declarative
visual and interaction design for data visualization. Starting from a single declarative specification, Reactive Vega constructs a
dataflow graph in which input data, scene graph elements, and interaction events are all treated as first-class streaming data sources.
To support expressive interactive visualizations that may involve time-varying scalar, relational, or hierarchical data, Reactive Vega’s
dataflow graph can dynamically re-write itself at runtime by extending or pruning branches in a data-driven fashion. We discuss both
compile- and run-time optimizations applied within Reactive Vega, and share the results of benchmark studies that indicate superior
interactive performance to both D3 and the original, non-reactive Vega system.

Index Terms—Information visualization, systems, toolkits, declarative specification, optimization, interaction, streaming data

1 INTRODUCTION

Declarative languages such as D3 [10], ggplot2 [38] and Vega [35]
have become popular tools for authoring visualizations. By deferring
control flow and execution concerns to the runtime, they free designers
to focus on visual encoding decisions. The separation of specification
and execution can also facilitate retargeting across platforms [20] and
enable programmatic generation of visualizations in graphical design
tools [31], statistical packages [18] and computational notebooks [21].

Although interaction is a critical aspect of effective data visualiza-
tion [26, 30], existing languages lack support for declarative interac-
tion design. Our recent work [32] closes this gap through composable

• Arvind Satyanarayan is with Stanford University. E-mail:
arvindsatya@cs.stanford.edu.

• Ryan Russell, Jane Hoffwell, and Jeffrey Heer are with the University of
Washington. E-mails: {ryan16, jhoffs, jheer}@uw.edu.

Manuscript received 31 Mar. 2015; accepted 1 Aug. 2015; date of
publication xx Aug 2015; date of current version 25 Oct. 2015.
For information on obtaining reprints of this article, please send
e-mail to: tvcg@computer.org.

interaction primitives that model input events as first-class streaming
data. As a result, user input can be processed through the full range of
data transformation operators and participate in visual encoding rules.
The primitives are grounded in Event-Driven Functional Reactive Pro-
gramming (E-FRP) [36] semantics to shift responsibility for coordi-
nating event-driven state changes from the designer to the language
runtime. However, we developed only a proof-of-concept system suf-
ficient for demonstrating the viability of declarative interaction design.

Here, we contribute Reactive Vega, the first system architecture to
provide robust and comprehensive support for declarative, interactive
visualization design. Our design is motivated by four primary goals.

A Unified Data Model. Existing reactive visualization toolk-
its [22, 32] feature fragmented architectures where only interaction
events are modeled as time-varying. Other input datasets remain static
and batch-processed. This artificial disconnect restricts expressiv-
ity and can result in wasteful computation. For example, interaction
events that manipulate only a subset of input tuples may trigger recom-
putation over the entire dataset. In contrast, Reactive Vega features a
unified data model in which input data, scene graph elements, and in-
teraction events are all treated as first-class streaming data sources.

Streaming Relational Data. Modeling input relational data with
E-FRP semantics alone does not supply sufficient granularity for tar-
geted recomputation. As E-FRP semantics consider only time-varying

scalar values, operators would observe an entire relation as having
changed and so would need to reprocess all tuples. Instead, Reactive
Vega integrates techniques from streaming databases [1, 2, 4, 5, 12]
alongside E-FRP, including tracking state at the tuple-level and only
propagating modified tuples through the dataflow graph.

Streaming Nested Data. Interactive visualizations, particularly
those involving small multiples, often require hierarchical structures.
Processing such data poses an additional challenge not faced by prior
reactive or streaming database systems. To support streaming nested
data, Reactive Vega’s dataflow graph rewrites itself in a data-driven
fashion at runtime: new branches are extended, or existing branches
pruned, in response to observed hierarchies. Each dataflow branch
models its corresponding part of the hierarchy as a standard relation,
enabling operators to remain agnostic to higher-level structure.

Interactive Performance. Reactive Vega performs both compile-
and run-time optimizations to increase throughput and reduce memory
footprint, including tracking metadata to prune unnecessary computa-
tion, and optimizing scheduling by inlining linear chains of operators.

Reactive Vega offers composable primitives for both visual encod-
ing and interaction, and enables portability of rendering and inter-
action modalities across devices. We demonstrate these advantages
through a variety of example applications. In addition, we conduct
benchmark evaluations of streaming and interactive visualizations and
find that Reactive Vega meets or exceeds the performance of both D3
and the original, unreactive Vega system.

2 RELATED WORK

Reactive Vega draws on prior work in functional reactive program-
ming, data stream management, and visualization systems. We defer
discussion of declarative visualization tools to the subsequent section.

2.1 Functional Reactive Programming
Functional Reactive Programming (FRP) models mutable values as
continuous, time-varying data streams [6]. We focus on a discrete vari-
ant called Event-Driven FRP (E-FRP) [36]. To capture value changes
as they occur, E-FRP provides streams, which are infinite time-ordered
sequences of discrete events. Streams can be composed into signals to
build expressions that react to events. The E-FRP runtime constructs
the necessary dataflow graph such that, when a new event fires, it prop-
agates to corresponding streams. Dependent signals are evaluated in a
two-phase update: signals reevaluated in the first phase use prior com-
puted values of their dependents, which are subsequently updated in
the second phase. E-FRP has been shown to be viable for authoring
interactive web applications [16, 28] and visualizations [14, 22, 32].

However, naive applications of E-FRP to visualization tasks can
result in wasteful recomputation. Traditional E-FRP primitives sup-
port only scalar values, whereas visualization pipelines must also pro-
cess relational and hierarchical data. Modeling these latter data types
as scalar values provides insufficient granularity to perform targeted
recomputation. Reactive Vega’s declarative interaction primitives re-
main grounded in E-FRP semantics, and they preserve the two-phase
update: interdependent signals are updated in the order in which they
are defined in the specification. However, to efficiently support re-
lational data, Reactive Vega integrates methods from the streaming
database literature. To support streaming hierarchical data, Reactive
Vega’s dataflow graph dynamically rewrites itself at runtime, instanti-
ating new branches to process nested relations.

2.2 Data Stream Management
The problem of managing streaming data has been well studied in
the database community. Researchers have developed an arsenal of
techniques through the development of systems such as Aurora [2],
Eddies [5], STREAM [4], and TelegraphCQ [12]. As tuples are ob-
served by these systems, they are flagged as either new or removed.
Tuples, rather than full relations, are passed between operators in a
query plan (realized as a dataflow graph). As a result, operators can
inspect just the updated tuples to perform efficient computation. How-
ever, for some operations a set of changed tuples is insufficient. For
example, a join of two relations requires access to all tuples within

a specified window. In such cases, caches (sometimes referred to as
views [2] or synopses [4]) are used to materialize a relation, and shared
among dependent operators.

Borealis [1] extends this work in two ways. To support streaming
modifications to tuples, the system introduces a revision processing
scheme. An operator can be replayed with revised tuples in place
of the original data; the operator will then only emit corresponding
revisions. Similarly, to enable dynamic operator parameters, Bore-
alis introduces time travel. When an operator parameter changes, an
undo is issued to the nearest cache. The cache emits tuple deletions,
effectively “rewinding” the system to a previous time. A subsequent
replay then performs recomputation with the new parameter value.

However, existing streaming data systems concern flat relations.
Reactive Vega instantiates these techniques, alongside E-FRP, within
a visualization pipeline and extends them to support streaming nested
data. To do so, Reactive Vega’s dataflow graph dynamically rewrites
itself at runtime with new branches. These branches unpack nested re-
lations, enabling downstream operators to remain agnostic to higher-
level structure while supporting arbitrary levels of nesting.

2.3 Imperative and Dataflow Visualization Systems

Dataflow architectures are common in scientific visualization systems,
such as IBM Data Explorer [3] and VTK [33]. Developers must
manually specify and connect each required operator into a network,
which can support updates in a demand-driven fashion (e.g., as data is
modified) or an event-driven fashion (e.g., in response to user input).
These systems expose fine-grained control over the construction of
the dataflow graph. For example, VTK developers can choose to favor
memory efficiency over processing speed, which causes dataflow op-
erators to delete their output after computation. While Reactive Vega
shares some dataflow strategies with these systems — for example, us-
ing pass-by-reference for unchanged tuples to reduce memory con-
sumption — it abstracts such execution concerns away from the user.
The dataflow graph is automatically assembled based on definitions
found in a declarative Vega specification, and optimizations are trans-
parently performed such that output data is only stored when needed
by downstream operators and shared wherever possible.

Within the domain of information visualization, the Stencil lan-
guage [14] is also grounded in FRP and uses a dataflow model. Like
Reactive Vega, it provides a unified data model where both input
data and interaction events are modeled as first-class streaming data
sources. However, Reactive Vega is more expressive than Stencil in
two important ways. Building on prior work [32], Reactive Vega of-
fers interaction primitives which enable fine-grained manipulation that
event streams alone lack. Moreover, graphical primitives can be arbi-
trarily nested with Reactive Vega, drawing from either hierarchical or
distinct data sources. This ability is critical to concisely specifying
small multiples displays, and requires Reactive Vega’s dataflow graph
to dynamically rewrite itself at runtime. To the best of our knowledge,
Stencil’s architecture does not support self-instantiating dataflows.

Improvise [37] features active variables called “live properties,”
which may be bound to control widgets and parameterize a visual-
ization. Using an expression language, live properties are assembled
into a coordination graph to dynamically evaluate visual encodings
and generate views of data. While Improvise and Reactive Vega share
some conceptual underpinnings, Improvise places a higher burden on
users to correctly construct the necessary graph. As Reactive Vega
takes a declarative approach to visualization design, users need only
compose the necessary primitives into a specification. Reactive Vega
parses this specification to build the corresponding dataflow graph.

3 BACKGROUND: DECLARATIVE VISUALIZATION DESIGN

Reactive Vega builds on a long-running thread of research on declar-
ative visualization design, popularized by the Grammar of Graph-
ics [39] and Polaris [34] (now Tableau). Here, we aim to provide
readers with sufficient background to understand the remainder of the
paper. In particular, we focus on concepts used by Vega [32, 35], and
its predecessors Protovis [9, 20] and D3 [10].

 "scales": [{"name": "x"}],

 "signals": [
 {"name": "brush_start", "stream": "mousedown"},
 {"name": "brush_end",
 "stream": "mouseup, [mousedown, mouseup] > mousemove"}
],

 "predicates": [{
 "name": "inside_brush",
 "type": "in",
 "set": {
 "range": [{"signal": "brush_start.event.x"},
 {"signal": "brush_end.event.x"}],
 "scale": "-x"
 },
 "item": {"arg": "key"}
 }
],

 "marks": [{
 "type": "symbol", "properties": { "update": {
 "rule": [
 {
 "predicate": "inside_brush",
 "input": {"key": {"field": "data.key"}},

 "fill": {"scale": "color", "field": "data.key"}
 },
 {
 "fill": {"value": "grey"}
 }
]}
 }}]

brush_start brush_end

mousedown mouseup, ...

-x -x

event streams

signals

scale inversions

predicates inside_brush (key)

rulesymbol mark

inside_brush (key=data.key) fill

fill

Fig. 2. A declarative specification for a brushing interaction [32].

Visual encodings are defined by composing graphical primitives
called marks [9], which include arcs, areas, bars, lines, plotting sym-
bols and text. Marks are associated with datasets, and their specifi-
cations describe how tuple values map to visual properties such as
position and color. Scales and guides (i.e., axes and legends) are pro-
vided as first-class primitives for mapping a domain of data values to
a range of visual properties. Special group marks serve as containers
to express nested or small multiple displays. Child marks and scales
can inherit a group mark’s data, or draw from independent datasets.

Mark specifications are processed by a multi-stage pipeline [20] to
produce a visualization. Of note are the build and evaluate phases,
which generate one mark instance per data tuple through a data
join [10] and set appropriate properties based on a status flag. The
status of a mark instance is determined by whether its backing data
tuple has been added (enter), retained (update), or removed (exit).

Although interaction is a crucial component of effective visual-
ization [26, 30], existing declarative visualization models, including
widely used tools such as D3 [10] and ggplot2 [38], do not offer
composable primitives for interaction design. Instead, if they sup-
port interaction, they do so through either a palette of standard tech-
niques [9, 10] or imperative event handling callbacks. While the for-
mer restricts expressivity, the later undoes many of the benefits of
declarative design. In particular, users are forced to contend with in-
teraction execution details, such as interleaved events and coordinating
external state, which can be complex and error-prone [13, 17, 29].

To address this gap, our recent work [32] introduces a model
for declarative interaction design. Our approach draws on Event-
Driven Functional Reactive Programming (E-FRP) [36] to abstract
input events as time-varying streaming data. An event selector
syntax facilitates composing and sequencing events together, for
example [mousedown, mouseup] > mousemove is a single
stream of mousemove events that occur between a mousedown and
mouseup (i.e., “drag” events). Event streams are modeled as first-
class data sources and can thus drive visual encoding primitives, or be
run through the full gamut of data transformations.

For added expressivity, event streams can be composed into reac-
tive expressions called signals. Signals can be used directly to specify
visual primitive properties. For example, a signal can dynamically de-
termine a mark’s fill color or a scale’s domain. Signals can also param-
eterize interactive selection rules for visual elements called predicates.
Predicates define membership within the selection (e.g., by specifying
the conditions that must hold true) and can be used within sequences
of production rules to drive conditional visual encodings.

Figure 2 shows how to use these interaction primitives to specify a
brushing interaction. Using this model, declaratively-specified inter-
action techniques can be encapsulated and parameterized into a stan-
dalone “interactor” definition. An interactor can then be reused and re-
purposed with any number of visualizations, functioning like a mixin.

4 THE REACTIVE VEGA ARCHITECTURE

The Reactive Vega system architecture integrates streaming database
techniques with Event-Driven Functional Reactive Programming (E-
FRP), and extends both to support expressive visualization design.
It comprises the necessary set of dataflow operators and methods to
model both raw data and interactions events as streaming input in a
uniform fashion. Dataflow operators are instantiated and connected by
the Reactive Vega parser, which traverses a declarative specification
containing definitions for input datasets, visual encoding rules, and in-
teraction primitives as described in § 3. When data tuples are observed,
or when interaction events occur, they are propagated (or “pulsed”)
through the graph with each operator being evaluated in turn. Propa-
gation ends at the graph’s sole sink: the renderer.

The Reactive Vega architecture and parser are implemented in the
JavaScript programming language, and are intended to run either in a
web browser or server-side using node.js. By default, Reactive Vega
renders to an HTML5 Canvas element; however, it also supports Scal-
able Vector Graphics (SVG) and server-side image rendering.

4.1 Data, Interaction, and Scene Graph Operators
Reactive Vega dataflow operators fall into one of three categories: in-
put data processing, interaction handling, or scene graph construction.

4.1.1 Processing Input Data
Reactive Vega parses each dataset definition and constructs a corre-
sponding branch in the dataflow graph, as shown in Figure 3. These
branches comprise input and output nodes connected by a pipeline of
data transformation operators. Input nodes receive raw tuples as a lin-
ear stream (tree and graph structures are supported via parent-child or
neighbor pointers, respectively). Upon data source updates, tuples are
flagged as either added, modified, or removed, and each tuple is given
a unique identifier. Data transformation operators use this metadata
to perform targeted computation and, in the process, may derive new
tuples from existing ones. Derived tuples retain access to their “par-
ent” via prototypal inheritance. This relieves operators of the burden
of propagating unrelated upstream changes.

Some operators require additional inspection of tuple state. Con-
sider an aggregate operator that calculates running statistics over a
dataset (e.g., mean and variance). When the operator observes added
or removed tuples, the statistics can be updated based on the current
tuple values. With modified tuples, the previous value must be sub-
tracted from the calculation and the new value added. Correspond-
ingly, tuples include a previous property. Writes to a tuple attribute
are done through a setter function that copies current values to the
previous object.

4.1.2 Handling Interaction
Reactive Vega instantiates an event listener node in the dataflow
graph for each low-level event type required by the visualization (e.g.,
mousedown or touchstart). These nodes are directly connected
to dependent signals as specified by event selectors [32]. In the case
of ordered selectors (e.g., a “drag” event specified by [mousedown,
mouseup] > mousemove), each constituent event is connected to

"data": [
 { "name": "stocks", "url": "data/stocks.csv"}},

 { "name": "index point",
 "source": "stocks",
 "transform": [{
 "type": "filter",
 "test": "month(d.date) == month(indexDate) &&
 year(d.date) == year(indexDate)"
 }]
 },

 { "name": "indexed_stocks",
 "source": "stocks",
 "transform": [
 { "type": "zip",
 "with": "index",
 "as": "index_term",
 "key": "symbol",
 "withKey": "symbol",
 "default": {"price": 0}
 },
 { "type": "formula",
 "field": "indexed_price",
 "expr": "d.index_term.price > 0 ?
 (d.price - d.index_term.price) / d.index_term.price : 0"
 }]
 }
]

Input

Filter

Collector

Output

Root

Input

Output Derive

Derive Input

Zip

Formula

Collector

Output

index
date

Fig. 3. The declarative specification (left) and resultant dataflow graph
(right) for processing the input data of the streaming index chart in Fig. 1.

Group
Builder

{ "data": [{ "name": "table", "url": "data/groupedBar.json"}],
 "scales": […],
 "axes": […],

 "marks": [{
 "type": "group",
 "from": {
 "data": "table",
 "transform": [{"type":"facet", "keys":["category"]}]
 },
 "properties": { "enter": {
 "y": {"scale": "cat", "field": "key"},
 "height": {"scale": "cat", "band": true}
 }},

 "marks": [

 { "name": "bars",
 "type": "rect",
 "properties": { "enter": {
 "y": {"scale": "pos", "field": "position"},
 "height": {"scale": "pos", "band": true},
 "x": {"scale": "val", "field": "value"},
 "x2": {"scale": "val", "value": 0}
 }}},

 { "type": "text",
 "from": {"mark": "bars"},
 "properties": { "enter": {
 "x": {"field": "x2", "offset": 2},
 "y": {"field": "y"},
 "dy": {"field": "height", "mult": 0.5},
 "align": {"value": "left"},
 "baseline": {"value": "middle"},
 "text": {"field": "datum.value"}
 }}}
]}]}

Group

A B

Rect Text Rect Text

0.1 0.6 0.9 0.1 0.6 0.9 0.7 0.2 1.1 0.7 0.2 1.1

Collector

Group
Bounder

Renderer

Group
Evaluator

Builder

Derive

Text A Data

Input

Output Builder

Collector

Group
Bounder

Builder

Derive

Text B Data

Input

OutputBuilder

Evaluator

Bounder

Evaluator

Bounder

Evaluator

Bounder

Evaluator

Bounder

Rect A
Data

Rect B
Data

table(b)

(c)

(d)

(a)

Faceted
Data

Derive

Fig. 4. (a) The specification for (b) a grouped bar chart, with (c) the underlying scene graph, and (d) corresponding portion of the dataflow graph.

an automatically created anonymous signal; an additional anonymous
signal connects them to serve as a gatekeeper, and only propagates the
final signal value when appropriate. Individual signals can be depen-
dent on multiple event nodes and/or other signals, and value propaga-
tion follows E-FRP’s two-phase update [36] as described in § 4.3.

4.1.3 Constructing the Scene Graph

To construct a scene graph, Reactive Vega follows a process akin to
the Protovis bind-build-evaluate pipeline [20]. When a declarative
specification is parsed, Reactive Vega traverses the mark hierarchy to
bind property definitions: property sets are compiled into encoding
functions and stored with the specification. At run-time, build and
evaluate operators are created for each bound mark. The build op-
erator performs a data join [10] to generate one scene graph element
(or “mark”) per tuple in the backing dataset, and the evaluate operator
runs the appropriate encoding functions. A downstream bounds oper-
ator calculates the bounding boxes of generated marks. For a nested
scene graph to be rendered correctly, the order of operations is critical:
parent marks must be built and encoded before their children, but the
bounds of the children must be calculated before their parents. The
resultant scene graph exhibits an alternating structure, with individ-
ual mark elements grouped under a sentinel node that holds the mark
specification. Figure 4 illustrates this process for a simple grouped bar
chart example.

Generated scene graph elements are modeled as data tuples and
can serve as the input data for downstream visual encoding primi-
tives. This establishes a reactive geometry that accelerates common
layout tasks, such as label positioning, and expands the expressiveness
of the specification language (prior versions of Vega do not support
reactive geometry). As generated marks can be run through subse-
quent data transformations, higher-level layout algorithms (e.g., those
that require a pre-computed initial layout [15]) are now supported in a
fully declarative fashion.

4.2 Changesets and Materialization

All data does not flow through the system at all times. Instead, oper-
ators receive and transmit changesets. A changeset consists of tuples
that have been observed, new signal values, and updates to other de-
pendencies that have transpired since the last render event. The propa-
gation of a changeset begins in response to streaming tuples or user in-
teraction. The corresponding input node creates a fresh changeset, and
populates it with the detected update. As the changeset flows through
the graph, operators use it to perform targeted recomputation, and may
augment it in a variety of ways. For example, a Filter operator
might remove tuples from a changeset if they do not meet the filter
predicate, or may mark modified tuples as added if they previously

had been filtered. A Cartesian product operator, on the other hand,
would replace all the tuples in the incoming changeset with the results
of a cross-product with another data stream.

While changesets only include updated data, some operators require
a complete dataset. For example, a windowed-join requires access
to all tuples in the current windows of the joined data sources. For
such scenarios, special collector operators (akin to views [2] or syn-
opses [4] in streaming databases) exist to materialize the data currently
in a branch. In order to mitigate the associated time and memory ex-
penses, Reactive Vega automatically shares collectors between depen-
dent operators. Upon instatiation, such operators must be annotated
as requiring a collector; at run-time they can then request a complete
dataset from the dataflow graph scheduler.

Finally, if animated transitions are specified, a changeset contains
an interpolation queue to which mark evaluators add generated mark
instances; the interpolators are then run when the changeset is evalu-
ated by the renderer.

4.3 Coordinating Changeset Propagation
A centralized dataflow graph scheduler is responsible for dispatch-
ing changesets to appropriate operators. The scheduler ensures that
changeset propagation occurs in topological order so that an opera-
tor is only evaluated after all of its dependencies are up-to-date. This
schedule prevents wasteful intermediary computation or momentary
inconsistencies, known as glitches [13]. Centralizing this responsi-
bility, rather than delegating it to operators, enables more aggressive
pruning of unnecessary computation. As the scheduler has access to
the full graph structure, it has more insight into the state of individual
operators and the progress of the propagation. We describe scheduling
optimizations in § 5.2.

When an interaction event occurs, however, an initial non-
topological update of signals is performed. Dependent signals are
reevaluated according to the order of their definitions within the
declarative specification. As a result, signals may use prior computed
values of their dependencies, which will subsequently be updated.
This process mimics E-FRP’s two-phase update [36], and is necessary
to enable expressive signal composition. Once all necessary signals
have been reevaluated, a changeset with the new signal values is sent
to the scheduler for propagation to the rest of the dataflow graph.

4.4 Pushing Internal and Pulling External Changesets
Two types of edges connect operators in the dataflow graph. The first
connects pairs of operators that work with the same data; for example
a pipeline of data transformation operators for the same data source,
or a mark’s build and evaluate operators. Changesets are pushed along
these edges, and operators directly use, augment, and propagate them.

Root

Group
Builder

Collector

Group
Bounder

Renderer

Group
Evaluator

Root

Group
Builder

Collector

Group
Bounder

Group
Evaluator

Root

(c)

Group
Builder

Faceted
Data

Rect
Builder

Evaluator

Bounder

Text
Builder

Evaluator

BounderText A
Data

Derive Root

Group
Builder

Faceted
Data

Rect
Builder

Evaluator

Bounder

Text
Builder

Evaluator

BounderText A
Data

Derive

Rect A
Data

Root

Faceted
Data

Rect
Builder

Evaluator

Bounder

Text
Builder

Evaluator

BounderText A
Data

Derive

Rect A
Data

Group
Builder

Compile
Time

Faceted
Data

Derive

Faceted
Data

Derive

(d) (e)

Run
Time

(b)(a)

Group
Builder

Internal

External

Data Source
Changeset
Propagation

Temporary

table table table

Group
Builder

table table

Fig. 5. Dataflow operators responsible for scene graph construction are dynamically instantiated at run-time, a process that results in the graph seen
in Fig. 4. (a) At compile-time, a branch corresponding to the root scene graph node is instantiated. (b-c) As the changeset (in blue) propagates
through nodes, group-mark builders instantiate builders for their children. Parent and child builders are temporarily connected (dotted lines) to
ensure children are built in the same timecycle. (d-e) When the changeset propagates to the children, the temporary connection is replaced with a
connection to the mark’s backing data source (also in blue).

The second type of edge connects operators with external depen-
dencies such as other data sources, signals, and scale functions. As
these edges connect disparate data spaces, they cannot directly con-
nect operators with their dependencies. To do otherwise would result
in operators performing computation over mismatched data types. In-
stead, external dependencies are connected to their dependents’ near-
est upstream Collector node, and changesets that flow along these
edges are flagged as reflow changesets. When a Collector receives
a reflow changeset, it propagates its tuples forward, flagging them as
modified. The dependents now receive correct input data and request
the latest values of their dependencies from the scheduler.

The only exception to this pattern is when signals rely on other
signals. Reflow changesets still flow along these edges but, as they
operate in scalar data space, they are not mediated by Collectors.

This hybrid push/pull system enables a complex web of interde-
pendent operators while reducing the implementation complexity of
individual elements. For example, regardless of whether a signal pa-
rameterizes data transforms or visual encoding primitives, it simply
needs to output a reflow changeset. Without such a system in place, the
signal would instead have to construct a different changeset for each
dependency edge it was a part of, and determine the correct dataset to
supply. Figures 1, 3, 4, 5, and 11 use filled and unfilled arrows for
internal and external connections, respectively.

4.5 Dynamically Restructuring the Graph
To support streaming nested data structures, operators can dynamically
restructure the graph at runtime by extending new branches, or pruning
existing ones, based on observed data. These dataflow branches model
their corresponding hierarchies as standard relations, thereby enabling
subsequent operators to remain agnostic to higher-level structure. For
example, a Facet operator partitions tuples by key fields; each parti-
tion then propagates down a unique, dynamically-constructed dataflow
branch, which can include other operators such as Filter or Sort.

In order to maintain interactive performance, new branches are
queued for evaluation as part of the same propagation in which they
were created. To ensure changeset propagation continues to occur
in topological order, operators are given a rank upon instantiation to
uniquely identify their place in the ordering. When new edges are
added to the dataflow graph, the ranks are updated such that an oper-
ator’s rank is always greater than those of its dependencies. When the
scheduler queues operators for propagation, it also stores the ranks it
observes. Before propagating a changeset to an operator, the scheduler
compares the operator’s current rank to the stored rank. If the ranks
match, the operator is evaluated; if the ranks do not match, the graph
was restructured and the scheduler requeues the operator.

The most common source of restructuring operations are scene
graph operators, as building a nested scene graph is entirely data-
driven. Dataflow branches for child marks (consisting of build-
evaluate-bound chains) cannot be instantiated until the parent mark
instances have been generated. As a result, only a single branch,
corresponding to the root node of the scene graph, is constructed at
compile-time. As data streams through the graph, or as interaction
events occur, additional branches are created to build and encode cor-
responding nested marks. To ensure their marks are rendered in the
same propagation cycle, new branches are temporarily connected to
their parents. These connections are subsequently removed so that
children marks will only be rebuilt and re-encoded when their backing
data source updates. Figure 5 provides a step-by-step illustration of
how scene graph operators are constructed during a propagation cycle
for the grouped bar chart in Figure 4.

5 ARCHITECTURE PERFORMANCE OPTIMIZATIONS

Declarative language runtimes can transparently perform a number
of performance optimizations [20]. In this section, we describe op-
timization strategies Reactive Vega uses to increase throughput and
reduce memory usage. We evaluate the effect of each strategy through
benchmark studies. Each benchmark was run with datasets sized at
N = 100, 1,000, 10,000, and 100,000 tuples. For ecological validity,
benchmarks were run with Google Chrome 42 (64-bit) and, to prevent
confounds with browser-based just-in-time (JIT) optimizations, each
iteration was run in a fresh instance. All tests were conducted on a
MacBook Pro system running Mac OS X 10.10.2, with a quad-core
2.5GHz Intel Core i7 processor and 16GB of 1600 MHz DDR3 RAM.

5.1 On-Demand Tuple Revision Tracking

Some operators (e.g., statistical aggregates) require both a tuple’s cur-
rent and previous values. Tracking prior values can affect both running
time and memory consumption. One strategy to minimize this cost is
to track tuple revisions only when necessary. Operators must declare
their need for prior values. Then, when tuples are ingested, their pre-
vious values are only tracked if the scheduler determines that they will
flow through an operator that requires revision tracking.

We ran a benchmark comparing three conditions: always track re-
visions, never track revisions, and on-demand tracking. Although the
“never” condition produces incorrect results, it provides a lower-bound
for performance. We measured the system’s throughput as well as
memory allocated when initializing a scatterplot specification, and af-
ter modifying either 1% or 100% of input tuples. The scatterplot fea-
tures two symbol marks fed by two distinct dataflows, A and B. Both

0.2xPr
oc

es
si

ng
 S

pe
ed

Number of Data Points

100

1x

0.6x

1.4x

1k 10k 100100k 1k 10k 100100k 1k 10k 100k

never

on-demand
always

init modify 1% modify all modify allinit modify 1% modify all
H

ea
p

Si
ze

0.2x

1x

0.6x

1.4x

100 1k 10k 100100k 1k 10k 100100k 1k 10k 100k

100 1k 10k 100 1k 10k100k 100 1k 10k 100k100k

100 1k 10k 100 1k 10k100k 100 1k 10k 100k100k

Number of Data Points

always

on-demand

never

10ms

100ms

1,000ms

10MB

100MB

Fig. 6. Effects of tuple revision optimizations on average processing speed (top) and memory footprint (bottom). Left-hand figures show relative
changes using no-tracking as a baseline (closer to 1.0 are better), and right-hand figures show the absolute values on a log10 scale (lower is better).

Pr
oc

es
si

ng
 S

pe
ed

5x

4x

3x

2x

1x

0

init update signal 1 update signal 2 update both signals

Number of Data Points

100 1k 10k 1k 10k 1k 10k 100k100k 100 100k 100 100k 100

both
multiple reflows

no skips
unchanged op

Number of Data Points

100 1k 10k 1k 10k 1k 10k 100k100k 100 100k 100 100k 1001k 10k 1k 10k

init update signal 1 update signal 2 update both signals

10ms

100ms

1,000ms

10,000ms

Fig. 7. The effects of pruning unnecessary computation on average processing speed. (a) A relative difference between conditions (higher is
better). (b) Absolute values for time taken, plotted on a log10 scale (lower is better).

Pr
oc

es
si

ng
 S

pe
ed

2x

1x

0

3x

initialize streaming updates

Number of Data Points

1k 10k 100k100 100k 100 1k 10k

initialize streaming updates

Number of Data Points

1k 10k 100k100 100k 100 1k 10k

10ms

100ms

1,000ms

10,000ms
inlined

queued

Fig. 8. The effects of inlining sequential operators on average processing speed. (a) A relative difference between conditions (higher is better). (b)
Absolute values for time taken, plotted on a log10 scale (lower is better).

branches ingest the same set of tuples, and include operators that de-
rive new attributes. However, B includes additional aggregation oper-
ators that require revision tracking.

The results are shown in Figure 6, with the effects of revision track-
ing most salient at larger dataset sizes. Always tracking revisions can
require 20-40% more memory, and can take up to 50% longer to ini-
tialize a visualization due to object instantiation overhead for storing
previous values. Our on-demand strategy effectively reduces these
costs, requiring only 5-10% more memory and taking 5% longer to
initialize than the “never” condition.

5.2 Pruning Unnecessary Recomputation

By centralizing responsibility for operator scheduling and changeset
dispatch, we can aggressively prune unnecessary recomputation. The
dataflow graph scheduler knows the current state of the propagation,
and dependency requirements for each queued operator, allowing us
to perform two types of optimizations.

Pruning multiple reflows of the same branch: As the scheduler
ensures a topological propagation ordering, a branch can be safely
pruned for the current propagation if it has already been reflowed.

Skipping unchanged operators: Operators identify their depen-
dencies — including signals, data fields, and scale functions — and
changesets maintain a tally of updated dependencies as they flow
through the graph. The scheduler skips evaluation of an individual op-
erator if it is not responsible for deriving new tuples, or if a changeset
contains only modified tuples and no dependencies have been updated.

Downstream operators are still queued for propagation.
To measure the impact of these optimizations, we created a grouped

bar chart with five data transformation operators: Derive → Fold
→ Derive→ Filter→ Facet. The first Derive is parameter-
ized by a signal, and the latter Derive and Filter operators are
parameterized by a second, distinct signal. We then benchmarked the
effect of four conditions (processing all recomputations, pruning mul-
tiple reflows only, skipping unchanged operators only, and applying
both optimizations) across four tasks (initializing the visualization, up-
dating each signal in turn, and updating both signals simultaneously).

Results are shown in Figure 7. Preventing multiple reflows is the
most effective strategy, increasing throughput 1.4 times on average.
Skipping unchanged operators sees little benefit by itself as, in our
benchmark setup, only the two operators following a fold are skipped
when changing signal1, and only the first derivation operator is
skipped when changing signal2. When the two strategies are com-
bined, however, we see a 1.6x increase in performance. This result
was consistent across multiple benchmark trials. After careful hand-
verification to ensure no additional nodes were erroneously skipped,
we hypothesize that the JavaScript runtime is able to perform just-in-
time optimizations that it is unable to apply to the other conditions.

5.3 Inlining Sequential Operators

To propagate changesets through the dataflow graph, the scheduler
adds operators to a priority queue, backed by a binary heap sorted
in topological order. This incurs an O(log N) cost for enqueueing and

Number of Data Points

100

1k

10k

100 1k 10k 100k

100

1k

Number of Data Points
100 1k 10k 100k

Fr
am

e
Ra

te

10

100 1k 10k 100k

Scatterplot

D3

Reactive Vega (SVG)
Reactive Vega (Canvas)

Vega 1.5 (SVG)
Vega 1.5 (Canvas)

20

30

40

50

60

0

Parallel Coordinates Plot

Number of Data Points
100 1k 10k 100k

100

1k

10k

100k

100

1k

10k

Number of Data Points
100 1k 10k 100k

Fr
am

e
Ra

te
 (f

ps
)

10

100 1k 10k 100k

20

30

40

50

60

0

Fr
am

e
Ra

te
 (f

ps
)

10

Number of Data Points
100 1k 10k 100k

20

30

40

50

60

0

D3

Reactive Vega (SVG)
Reactive Vega (Canvas)

Vega 1.5 (SVG)
Vega 1.5 (Canvas)

Trellis Plot

100

1k

10k

Number of Data Points
100 1k 10k 100k

100

1k

Number of Data Points
100 1k 10k 100k

Fr
am

e
Ra

te
 (f

ps
)

10

Number of Data Points
100 1k 10k 100k

20

30

40

50

60

0

D3

Reactive Vega (SVG)
Reactive Vega (Canvas)

Vega 1.5 (SVG)
Vega 1.5 (Canvas)

In
iti

al
iza

tio
n

Ti
m

e
(m

s)
In

iti
al

iza
tio

n
Ti

m
e

(m
s)

In
iti

al
iza

tio
n

Ti
m

e
(m

s)

Fr
am

e
Ti

m
e

(m
s)

Fr
am

e
Ti

m
e

(m
s)

Fr
am

e
Ti

m
e

(m
s)

100k

200 500 2k 5k 20k 50k 100 1k 10k 100k200 500 2k 5k 20k 50k
Number of Data Points

100 1k 10k 100k100 1k 10k 100k200 500 2k 5k 20k 50k

Number of Data Points
100 1k 10k 100k200 500 2k 5k 20k 50k

Number of Data Points
100 1k 10k 100k

Number of Data Points
100 1k 10k 100k200 500 2k 5k 20k 50k

Number of Data Points
100 1k 10k 100k

Number of Data Points
100 1k 10k 100k200 500 2k 5k 20k 50k

Number of Data Points
100 1k 10k 100k

Number of Data Points
100 1k 10k 100k200 500 2k 5k 20k 50k

Number of Data Points
100 1k 10k 100k

Number of Data Points
100 1k 10k 100k

Number of Data Points
100 1k 10k 100k200 500 2k 5k 20k 50k

Number of Data Points
100 1k 10k 100k

Number of Data Points
100 1k 10k 100k

Number of Data Points
100 1k 10k 100k200 500 2k 5k 20k 50k

Fig. 9. Average performance of rendering (non-interactive) streaming visualizations: (top-bottom) scatterplot, parallel coordinates, and trellis plot;
(left-right) initialization time, average frame time, and average frame rate. Dashed lines indicate the threshold of interactive updates [11].

SPLOM Brushing & Linking

10

100 1k

20

30

40

50

60

0

Fr
am

e
Ra

te
 (f

ps
)

10

Number of Data Points
100 1k 10k

20

30

40

60

0

Time Series Overview + Detail

50

10

20

30

40

60

0

Scatterplot Panning & Zooming

50

10

20

30

40

60

0

D3

Reactive Vega (SVG)
Reactive Vega (Canvas)

Vega 1.5 (SVG)
Vega 1.5 (Canvas)

Fr
am

e
Ra

te
 (f

ps
)

Fr
am

e
Ra

te
 (f

ps
)

200 500 2k 5k 1k
Number of Data Points

100 1k 10k200 500 2k 5k 1k
Number of Data Points

100 1k 10k200 500 2k 5k

Fig. 10. Average frame rates for three interactive visualizations: (left-right) brushing and linking on a scatterplot matrix; brushing and linking on an
overview+detail visualization; panning and zooming on a scatterplot. Dashed lines indicate the threshold of interactive updates [11].

dequeueing operators, which can be assessed multiple times per opera-
tor if the graph is dynamically restructured. However, branching only
occurs as a result of operators registering dependencies, and depen-
dencies are only connected to Collector nodes. As a result, much
of the dataflow graph comprises linear paths. This is particularly true
for scene graph operators, which are grouped into hundreds (or even
thousands) of independent mark build-evaluate-bound branches.

We explore the effect of inline evaluation of linear branches,
whereby operators indicate that their neighbors can be called directly
rather than queued for evaluation. The scheduler remains responsible
for propagating the changeset, and thus can continue to apply the op-
timizations previously discussed. Although inline evaluation can be
applied in a general fashion by coalescing linear branches into “super
nodes,” for simplicity we only evaluate inlining of scene graph oper-
ators here. Mark builders directly call evaluators and bounders, and
group mark builders directly call new child mark builders rather than
forming a temporary connection.

Figure 8 shows the results of this optimization applied to a parallel
coordinates plot (PCP). The plot uses a nested scene graph in which
each line segment is built by a dedicated build-evaluate-bound branch.
As we can see, inlining does not have much impact on the initialization
time. This is unsurprising, as the largest initialization cost is due to un-
avoidable graph restructuring. However, inlining improves streaming
operations by a 1.9x factor on average. As streaming updates only
propagate down specific branches of the dataflow graph, inline evalu-
ation results in at least 4 fewer queuing operations by the scheduler.

6 COMPARATIVE PERFORMANCE BENCHMARKS

We now evaluate the performance of Reactive Vega against D3 [10]
and the original, non-reactive Vega system (v1.5.0) [35]. These per-
formance evaluations use the setup previously described.

6.1 Streaming Visualizations
Figure 9 shows the average performance of (non-interactive) streaming
scatter plots, parallel coordinates plots, and trellis plots. We first mea-
sured the average time to initially parse and render the visualizations.
To gauge streaming performance, we next measured the average time
taken to update and re-render upon adding, modifying, or removing
1% of tuples. We tested with datasets sized between 100 and 100,000
tuples, and ran 10 trials per size.

Reactive Vega has the greatest effect with the parallel coordinates
plot, displaying 2x and 4x performance increases over D3 and Vega
1.5, respectively. This effect is the result of each line in the plot being
built and encoded by its own branch of the dataflow graph. Across
the other two examples, and averaging between the Canvas and SVG
renderers, we find that although Reactive Vega takes 1.7x longer to
initialize the visualizations, subsequent streaming operations are 1.9x
faster than D3. Against Vega 1.5, Reactive Vega is again 1.7x slower at
initializing visualizations; streaming updates perform roughly op-par
with the Canvas renderer, but are 2x faster with the SVG renderer.

Slower initialization times for Reactive Vega are to be expected.
D3 does not have to parse and compile a JSON specification, and a
streaming dataflow graph is a more complex execution model, with

higher overheads, than batch processing. However, with streaming
visualizations this cost amortizes and performance in response to data
changes becomes more important. In this case, Reactive Vega makes
up the difference in a single update cycle.

6.2 Interactive Visualizations
We evaluated the performance of interactive visualizations (measured
in terms of interactive frame rate) using three common examples:
brushing & linking a scatterplot matrix, a time-series overview+detail
visualization, and panning & zooming a scatterplot. We chose these
examples as they all leverage interactive behaviors supported by D3,
with canonical implementations available for each1,2,3. For Reactive
Vega, we expressed these visualizations with a single declarative spec-
ification. For D3 and Vega 1.5, we use custom event handling call-
backs. The Vega 1.5 callbacks mimic the behavior of the fragmented
reactive approach used in prior work [32]. We tested these visualiza-
tions with datasets sized between 100 and 10,000 tuples.

Figure 10 shows the results — on average, and across both Canvas
and SVG renderers, Reactive Vega offers superior interactive perfor-
mance to custom D3 and Vega event handling callbacks. This effect
primarily stems from Reactive Vega’s unified data model, and is most
noticeable with brushing & linking a scatterplot matrix and the time-
series overview+detail visualization. In both examples, interactions
manipulate only a subset of all data tuples. With Reactive Vega, only
these tuples are processed, and their corresponding scene graph ele-
ments re-encoded and re- rendered. By comparison, with Vega 1.5’s
fragmented reactive approach, the entire scene graph must be recon-
structed and rendered in response to changes in input data.

7 EXAMPLE STREAMING AND INTERACTIVE VISUALIZATIONS

Prior work [32] demonstrates the expressivity of declarative interac-
tion design with example visualizations that cover a taxonomy of inter-
action techniques [41]. Figure 12 illustrates several of these interactive
visualizations using Reactive Vega. We now describe additional exam-
ples that illustrate new use cases that Reactive Vega enables, highlight-
ing advantages of declarative interactive visualization design.

7.1 Streaming Financial Index Chart
Prior work [32] used declarative interaction primitives to specify a fi-
nancial index chart. A static snapshot of time-series stock price data
for several companies is visualized as a line chart and interactively
normalized by an index point.

With Reactive Vega, we can extend this example to use real-time
stock prices, rather than static historical data, by leveraging the Ya-
hoo! Finance API. We initialize the visualization by requesting the
stock prices of companies over the past 24 hours, at a minute-level
resolution. Then, every minute, we poll the API endpoints again to
request the most recent prices. A predicate checks the timestamp
property of incoming tuples to ensure that only new data is added to
the visualization. This guards against adding duplicate data when our
update cycle does not coincide with Yahoo’s, or when the markets
are closed. API calls are synchronized and a changeset is only fired
through the graph once all requests have received responses. As a re-
sult, all lines update together every minute. The resulting real-time
index chart and corresponding dataflow graph are shown in Figure 1.

7.2 DimpVis: Touch Navigation with Time-Series Data
DimpVis [23] is a recently introduced interaction technique that al-
lows direct manipulation navigation of time-series data. Starting with
a scatterplot depicting data at a particular time slice, users can touch
plotted points to reveal a “hint path”: a line graph that displays the tra-
jectory of the selected element over time. Dragging the selected point
along this path triggers temporal navigation, with the rest of the points
updating to reflect the new time. In evaluation studies, users reported
feeling more engaged when exploring their data using DimpVis [23].

1Brushing & Linking: http://bl.ocks.org/mbostock/4063663
2Overview + Detail: http://bl.ocks.org/mbostock/1667367
3Pan & Zoom: http://bl.ocks.org/mbostock/3892919

Interpolation

Scoring

Distance
Calculation

Point
Capture

Root Group
Builder

country
timeline

Input

Filter

Sort

Collector

Output

current
point

Input

Filter

Collector

Output

Group
Evaluator

countries
year

Input

Filter

Formula

Collector

Output

selected
Pts

Input

Toggle

Collector

Output

Builder

Builder

Builder

Builder

Builder

Group
BounderCollector Renderer

current
Country

dragging

next
Dist

next
Score

prev
Dist

prev
Score

prev
point

next
point

mousedown,
touchend

mouseup,
touchstart

countries

Input

Window

Output

Filter
Derive

Derive

Derive

clicked
Pt

curr
Dist

inter
year

current
point

mousemove,
touchmove

Internal
External

Events

Signals

year

Builder

Fig. 11. The dataflow graph produced by parsing a declarative speci-
fication for the DimpVis interaction technique [23]. Users tap and drag
points to navigate the data through time. Signals calculate distances
and scoring functions to smoothly interpolate the points in response.

We can recreate this technique with Reactive Vega’s declara-
tive interaction primitives and the GapMinder country-fertility-life-
expectancy dataset used by the original. Input data is passed through
a Window transform, such that every tuple contains references to the
tuples that come before and after it in time, and filtered to remove
triplets that span multiple countries. Signals constructed over mouse
and touch events capture the selected point, and downstream signals
calculate distances between the user’s current position and the previ-
ous and next points. A scalar projection over these distances gives us
scoring functions that determine whether the user is moving forwards
or backwards in time. Scores feed a signal that is used in a derived
data source to calculate new interpolated properties for the remain-
ing points in the dataset. These interpolated properties determine the
position of plotted points, thereby producing smooth transitions as the
user drags back-and-forth. To draw the hint map, an additional derived
data source filters data tuples for the currently country across all years.
Figure 11 shows the dataflow graph produced by this specification.

7.3 Reusable Touch Interaction Abstractions

With the proliferation of touch-enabled devices, particularly smart-
phones and tablets, supporting touch-based interaction has become an
increasingly important part of interactive visualization design. How-
ever, HTML5 provides a low-level API for touch events, with only
three event types broadly supported —touchstart, touchmove,
and touchend. On multitouch devices these events contain an array
of touch points. The application developer is responsible for the book-

(a) (b) (c) (d)

Fig. 12. Example declarative interactive visualizations [32] that cover an existing taxonomy of interaction techniques [41]: (a) Reconfigure with an
Index Chart; (b) Explore by panning & zooming; (c) Select & Connect with brushing & linking; (d) Abstract/Elaborate with overview+detail;

keeping involved with tracking multiple points across interactions, a
cumbersome and difficult process.

Declarative interaction design enables us to abstract low-level de-
tails away, and instead expose higher-level, semantic events in a
reusable fashion. Definitions for signals and other interaction prim-
itives can be encapsulated and parameterized as standalone “interac-
tors.” When an interactor is added to a visualization, Reactive Vega
merges the two specifications together, name-spacing components to
prevent conflicts. In this way, we can build an interactor compris-
ing signals that perform the necessary logic for common multitouch
gestures. When included in a host visualization, the visualization de-
signer can safely ignore lower-level events, and instead build interac-
tions driven by signals provided by the interactor. For example, after
including a touch interactor as part of a scatterplot specification, the
designer can use twotouchmove and pinchDelta signals to drive
panning and zooming interactions.

8 DISCUSSION AND FUTURE WORK

Declarative languages are a popular means of authoring visualiza-
tions [9, 10, 20], but have lacked first-class support for interaction
design. Though recent work [32] addresses this gap with composable
interaction primitives, it provides only a proof-of-concept system. In
response, we contribute Reactive Vega, the first system architecture to
support declarative visualization and interaction design in a compre-
hensive and performant fashion.

It is important to note that although Reactive Vega provides an com-
plete end-to-end system — whereby users invoke the parser to traverse
an input declarative specification and instantiate the necessary archi-
tecture components to render a visualization — this process can be de-
coupled. Alternate parsers can be supplied, and higher-level tools can
opt to manually construct and connect required operators. Regardless
of the specification process, the Reactive Vega system architecture pro-
vides the dataflow operators and management necessary to support ex-
pressive visualization design, with streaming raw data and interaction
events modeled uniformly.

Authoring a declarative specification, however, can present a hurdle
to users. Although separating specification and execution frees design-
ers to focus on visual encoding decisions, it also hides the underlying
execution model. Language-level optimizations and delayed property
evaluations make debugging particularly difficult [10], with internal
structures exposed only when errors arise. To better understand these
tradeoffs, we evaluated Reactive Vega’s declarative model in our prior
work [32]. Using the Cognitive Dimensions of Notation [8], we deter-
mined that although declarative specification introduces hidden depen-
dencies and decreases visibility, these are outweighed by an increase
in the specification consistency of visual encoding and interaction, and
a decrease in viscosity of abstraction primitives. Moveover, Vega’s
declarative JSON syntax simplifies programmatic generation of visu-
alizations, enabling the creation of programs that generate and reason
about visualizations at a higher level.

These findings are mirrored in the real-world adoption of Vega. For

example, Wikipedia, a security-concious environment where it would
be difficult to allow users to write imperative visualization code, has
recently integrated Vega [27] to enable visualization of data embed-
ded in articles. Similarly, Vega’s declarative format is well-suited for
generation by higher-level tools. For example, Lyra [31] allows de-
signers to create Vega visualizations through direct-manipulation; and
Voyager [40] eschews the specification process for data exploration,
by providing faceted search over a gallery of Vega visualizations.

Still, improved support for authoring and debugging Vega specifi-
cations remains a promising avenue for future work. Visualizations
of program behavior have been shown to improve learnability [19],
and Reactive Vega’s dataflow graph offers an execution model that can
be readily visualized. Linked selection among specification text, data
sources, a dataflow graph diagram, and the output visualization could
aid understanding and debugging. New debugging environments for
Reactive Vega could instrument the dataflow graph to enable inspec-
tion, for example stepping through changeset propagation.

Reactive Vega’s architecture also offers opportunities to study scal-
able visualization design. Interactive visualization of large-scale
datasets often requires offloading computation to server-side architec-
tures. For example, Nanocubes [24] and imMens [25] assemble multi-
dimensional data cubes that can be decomposed into smaller data tiles
and pushed to the client. Such components could be integrated into
a dataflow graph with execution distributed across server and client.
For example, as the dataflow graph scheduler is responsible for propa-
gation, it might anticipate possible user interactions and prefetch data
tiles in order to reduce latency [7].

Finally, as previously mentioned, an ecosystem of higher-level sys-
tems is developing around Vega. Statistical packages (ggvis [18]),
data exploration tools (Voyager [40]), computational notebooks
(iPython [21]), and graphical design tools (Lyra [31]) use earlier ver-
sions of Vega to automatically construct visualizations as part of the
data analysis process, or to facilitate visualization prototyping and
publishing. With Reactive Vega, these systems can extend the types
of visualizations they support to include interactive and streaming ex-
amples. This expressivity, in turn, may spur development of alternate
forms of specifying interactions, for example through higher-level lan-
guages or via direct manipulation and demonstration.

Reactive Vega is an open source system, and we have merged it
with the existing Vega project. It is available at http://vega.
github.io/vega/, along with a “live editor” and a number of ex-
ample interactive visualizations.

ACKNOWLEDGMENTS

This work was supported by an SAP Stanford Graduate Fellowship,
the Intel Big Data ISTC, the Moore Foundation, and DARPA XDATA.

REFERENCES

[1] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack,
J.-H. Hwang, W. Lindner, A. Maskey, A. Rasin, E. Ryvkina, et al. The

http://vega.github.io/vega/
http://vega.github.io/vega/

design of the borealis stream processing engine. In CIDR, volume 5,
pages 277–289, 2005.

[2] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee,
M. Stonebraker, N. Tatbul, and S. Zdonik. Aurora: a new model and
architecture for data stream management. The VLDB JournalThe Inter-
national Journal on Very Large Data Bases, 12(2):120–139, 2003.

[3] G. Abram and L. Treinish. An extended data-flow architecture for data
analysis and visualization. In Proceedings of the 6th conference on Visu-
alization’95, page 263. IEEE Computer Society, 1995.

[4] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito, R. Mot-
wani, U. Srivastava, and J. Widom. Stream: The stanford data stream
management system. Technical Report 2004-20, Stanford InfoLab, 2004.

[5] R. Avnur and J. M. Hellerstein. Eddies: Continuously adaptive query
processing. ACM SIGMOD Record, 29(2):261–272, 2000.

[6] E. Bainomugisha, A. L. Carreton, T. v. Cutsem, S. Mostinckx, and W. d.
Meuter. A survey on reactive programming. ACM Computing Surveys
(CSUR), 45(4):52, 2013.

[7] L. Battle, R. Chang, and M. Stonebraker. Dynamic generation and
prefetching of data chunks for exploratory visualization. In IEEE InfoVis
Posters Track, 2014.

[8] A. F. Blackwell, C. Britton, A. Cox, T. R. Green, C. Gurr, G. Kadoda,
M. Kutar, M. Loomes, C. L. Nehaniv, M. Petre, et al. Cognitive dimen-
sions of notations: Design tools for cognitive technology. In Cognitive
Technology: Instruments of Mind, pages 325–341. Springer, 2001.

[9] M. Bostock and J. Heer. Protovis: A graphical toolkit for visualization.
IEEE Trans. Visualization & Comp. Graphics, 15(6):1121–1128, 2009.

[10] M. Bostock, V. Ogievetsky, and J. Heer. D3: Data-Driven Documents.
IEEE Trans. Visualization & Comp. Graphics, 17(12):2301–2309, 2011.

[11] S. K. Card, T. P. Moran, and A. Newell. An engineering model of hu-
man performance. Ergonomics: Psychological mechanisms and models
in ergonomics, 3:382, 2005.

[12] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M.
Hellerstein, W. Hong, S. Krishnamurthy, S. R. Madden, F. Reiss, and
M. A. Shah. Telegraphcq: continuous dataflow processing. In Proceed-
ings of the 2003 ACM SIGMOD international conference on Management
of data, pages 668–668. ACM, 2003.

[13] G. H. Cooper and S. Krishnamurthi. Embedding dynamic dataflow in a
call-by-value language. In Programming Languages and Systems, pages
294–308. Springer, 2006.

[14] J. Cottam and A. Lumsdaine. Stencil: a conceptual model for represen-
tation and interaction. In Information Visualisation, pages 51–56. IEEE,
2008.

[15] css-layout. https://github.com/facebook/css-layout,
March 2015.

[16] E. Czaplicki and S. Chong. Asynchronous functional reactive program-
ming for guis. In Proc. ACM SIGPLAN, pages 411–422. ACM, 2013.

[17] J. Edwards. Coherent reaction. In Proc. ACM SIGPLAN, pages 925–932.
ACM, 2009.

[18] ggvis: Interactive grammar of graphics for R. http://ggvis.
rstudio.com/, June 2015.

[19] P. J. Guo. Online python tutor: embeddable web-based program visual-
ization for cs education. In Proceeding of the 44th ACM technical sym-
posium on Computer science education, pages 579–584. ACM, 2013.

[20] J. Heer and M. Bostock. Declarative language design for interactive vi-
sualization. IEEE Trans. Visualization & Comp. Graphics, 16(6):1149–
1156, 2010.

[21] The IPython Notebook. http://ipython.org/notebook.html,
June 2015.

[22] C. Kelleher and H. Levkowitz. Reactive data visualizations. In
IS&T/SPIE Electronic Imaging, pages 93970N–93970N. International
Society for Optics and Photonics, 2015.

[23] B. Kondo and C. Collins. Dimpvis: Exploring time-varying information
visualizations by direct manipulation. IEEE Transactions on Visualiza-
tion and Computer Graphics, 20(12):2003–2012, 2014.

[24] L. Lins, J. T. Klosowski, and C. Scheidegger. Nanocubes for real-time ex-
ploration of spatiotemporal datasets. IEEE Transactions on Visualization
and Computer Graphics, 19(12):2456–2465, 2013.

[25] Z. Liu, B. Jiang, and J. Heer. immens: Real-time visual querying of big
data. Computer Graphics Forum (Proc. EuroVis), 32, 2013.

[26] Z. Liu and J. T. Stasko. Mental models, visual reasoning and interac-
tion in information visualization: A top-down perspective. IEEE Trans.
Visualization & Comp. Graphics, 16(6):999–1008, 2010.

[27] MediaWiki Extension:Graph. https://www.mediawiki.org/

wiki/Extension:Graph, June 2015.
[28] L. A. Meyerovich, A. Guha, J. Baskin, G. H. Cooper, M. Greenberg,

A. Bromfield, and S. Krishnamurthi. Flapjax: a programming language
for ajax applications. ACM SIGPLAN Notices, 44(10):1–20, 2009.

[29] B. A. Myers. Separating application code from toolkits: eliminating the
spaghetti of call-backs. In Proc. ACM UIST, pages 211–220. ACM, 1991.

[30] W. A. Pike, J. Stasko, R. Chang, and T. A. O’Connell. The science of
interaction. Information Visualization, 8(4):263–274, 2009.

[31] A. Satyanarayan and J. Heer. Lyra: An interactive visualization design
environment. Computer Graphics Forum (Proc. EuroVis), 2014.

[32] A. Satyanarayan, K. Wongsuphasawat, and J. Heer. Declarative inter-
action design for data visualization. In Proceedings of the 27th annual
ACM symposium on User interface software and technology, pages 669–
678. ACM, 2014.

[33] W. J. Schroeder, K. M. Martin, and W. E. Lorensen. The design and
implementation of an object-oriented toolkit for 3d graphics and visual-
ization. In Proceedings of the 7th conference on Visualization’96, pages
93–ff. IEEE Computer Society Press, 1996.

[34] C. Stolte, D. Tang, and P. Hanrahan. Polaris: A system for query, analysis,
and visualization of multidimensional relational databases. IEEE Trans.
Visualization & Comp. Graphics, 8(1):52–65, 2002.

[35] Vega: A Visualization Grammar. http://trifacta.github.io/
vega, March 2015.

[36] Z. Wan, W. Taha, and P. Hudak. Event-driven FRP. In Practical Aspects
of Declarative Languages, pages 155–172. Springer, 2002.

[37] C. Weaver. Building highly-coordinated visualizations in Improvise. In
Proc. IEEE Information Visualization, pages 159–166, 2004.

[38] H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer,
2009.

[39] L. Wilkinson. The Grammar of Graphics. Springer, 2005.
[40] K. Wongsuphasawat, D. Moritz, A. Anand, J. Mackinlay, B. Howe, and

J. Heer. Voyager: Exploratory Analysis via Faceted Browsing of Visual-
ization Recommendations. IEEE Trans. Visualization & Comp. Graphics,
2015.

[41] J. S. Yi, Y. ah Kang, J. T. Stasko, and J. A. Jacko. Toward a deeper un-
derstanding of the role of interaction in information visualization. IEEE
Transactions on Visualization and Computer Graphics, 13(6):1224–
1231, 2007.

https://github.com/facebook/css-layout
http://ggvis.rstudio.com/
http://ggvis.rstudio.com/
http://ipython.org/notebook.html
https://www.mediawiki.org/wiki/Extension:Graph
https://www.mediawiki.org/wiki/Extension:Graph
http://trifacta.github.io/vega
http://trifacta.github.io/vega

	Introduction
	Related Work
	Functional Reactive Programming
	Data Stream Management
	Imperative and Dataflow Visualization Systems

	Background: Declarative Visualization Design
	The Reactive Vega Architecture
	Data, Interaction, and Scene Graph Operators
	Processing Input Data
	Handling Interaction
	Constructing the Scene Graph

	Changesets and Materialization
	Coordinating Changeset Propagation
	Pushing Internal and Pulling External Changesets
	Dynamically Restructuring the Graph

	Architecture Performance Optimizations
	On-Demand Tuple Revision Tracking
	Pruning Unnecessary Recomputation
	Inlining Sequential Operators

	Comparative Performance Benchmarks
	Streaming Visualizations
	Interactive Visualizations

	Example Streaming and Interactive Visualizations
	Streaming Financial Index Chart
	DimpVis: Touch Navigation with Time-Series Data
	Reusable Touch Interaction Abstractions

	Discussion and Future Work

