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ABSTRACT
An essential goal of quantitative color encoding is the accurate
mapping of perceptual dimensions of color to the logical struc-
ture of data. Prior research identifies weaknesses of “rainbow”
colormaps and advocates for ramping in luminance, while
recent work contributes multi-hue colormaps generated using
perceptually-uniform color models. We contribute a compar-
ative analysis of different colormap types, with a focus on
comparing single- and multi-hue schemes. We present a suite
of experiments in which subjects perform relative distance
judgments among color triplets drawn systematically from
each of four single-hue and five multi-hue colormaps. We
characterize speed and accuracy across each colormap, and
identify conditions that degrade performance. We also find
that a combination of perceptual color space and color naming
measures more accurately predict user performance than either
alone, though the overall accuracy is poor. Based on these
results, we distill recommendations on how to design more
effective color encodings for scalar data.
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INTRODUCTION
The rainbow colormap – a scheme spanning the most saturated
colors in the spectrum – has been a staple (or depending on
one’s perspective, eyesore) of visualization practice for many
years. Despite its popularity, researchers have documented a
number of deficiencies that may hinder accurate reading of
the visualized data [4, 26, 36, 42]. They raise the following
criticisms: the rainbow colormap is unfriendly to color-blind
users [26], it lacks perceptual ordering [4], it fails to capture
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Figure 1: Colormaps under study. We evaluate four single-
hue, three perceptually-uniform multi-hue, a diverging, and
a rainbow colormap(s). We divide them into (a) assorted,
(b) single-hue and (c) multi-hue groups, with two colormaps
repeated across groups for replication.

the nuances of variations for data with high spatial frequen-
cies [36], and it is ineffective at conveying gradients due to
banding effects at hue boundaries [4, 42].

Each of these problems may be traced to a naïve ramping
through the space of color hues. In response, a common color
design guideline for scalar quantitative data is to use a single-
hue colormap that ramps primarily in luminance [6] (from
dark to light, or vice versa). Changes in luminance provide
a strong perceptual cue for ordering, consistent across indi-
viduals and cultures. Moreover, the human visual system has
higher-resolution processing pathways for achromatic vision
than for chromatic vision [23], supporting discrimination of
higher spatial frequencies in the luminance channel.

These considerations raise a natural question: are the above
criticisms specific to the rainbow colormap, or do they apply
to multi-hue colormaps more generally? Defenders of rainbow
and other multi-hue colormaps may cite not only aesthetic con-
cerns, but also a potential for increased visual discrimination.
By ramping through hue in addition to luminance, might view-
ers benefit from greater color separation across a colormap and
thereby discern both small and large value differences more
reliably? New multi-hue colormaps – the viridis colormap
and its variants [38] – have recently been adopted by many
visualization tools as a replacement for rainbow colormaps.
These colormaps were formed by tracing curves through a
perceptually-uniform color model, simultaneously ramping in
both hue and luminance, while avoiding red-green contrast to
respect the most common form of color vision deficiency.

Though existing guidelines and designs for quantitative color
derive from both first principles and experience, they have not
been comprehensively evaluated. In this work, we investigate



the efficacy of a range of colormaps for encoding quantitative
information. We examine a space of colormaps including a
rainbow colormap, single-hue colormaps that vary primarily
in luminance, multi-hue colormaps that vary both in hue and
luminance, and (for comparison) a diverging colormap that
combines opposing single-hue colormaps to convey distance
from a neutral mid-point.

Our primary contribution is a comparative performance profile
of quantitative color encodings. We analyze the speed and
accuracy of each colormap in supporting relative similarity
judgments across varying scale locations and value spans. We
find that, when judiciously designed, single- and multi-hue col-
ormaps both support accurate decoding. However, we find that
single-hue colormaps exhibit higher error over small data value
ranges, supporting the argument that multi-hue colormaps can
provide improved resolution. In addition, we identify con-
ditions that degrade accuracy across colormaps, notably that
dark regions set against a white background afford much worse
color discrimination than that predicted by perceptual color
space models. We also confirm that a naïve rainbow colormap
performs the worst among all colormaps considered. These
results provide guidance for selecting effective quantitative
colormaps and further improving their design.

As a secondary contribution, we construct statistical models
to predict user performance on triplet comparions tasks, based
on color theory measures. We consider both perceptual color
spaces such as CIE LAB [24] and CAM02-UCS [28], as well
as a model of color naming [21]. We find that combining
perceptual measures with color naming measures leads to
higher predictive accuracy than either alone. However, we also
observe that our models fail to account for a large proportion
of the variance observed in our experiments, suggesting the
need for future work on refined color measures applicable to
automated design and evaluation.

RELATED WORK
We draw on both the century-long research on color theory,
and more recent work on colormap design and evaluation.

Color Models
Perceptually-uniform color spaces attempt to model equal per-
ceptual differences as equal distances in a vector space [43].
The color science community has progressively refined a series
of models for improved estimation accuracy over a wider vari-
ety of viewing conditions. Example models include CIELAB
[24], ∆E94 [30], DE2000 [29], and CAM02-UCS [28].

Despite being one of the earliest perceptually uniform models,
CIELAB remains a popular choice in visualization research
(e.g. [25, 40]), thanks to its relatively simple color distance
calculation equation, which is the L2 Euclidean norm between
two points in the space. CAM02-UCS is a recent variant
that builds upon the CIECAM02 color appearance model and
provides better estimation of lightness and hue. Dozens of
empirical datasets, which contain pairs of color difference
values with an average of 10 ∆E∗

ab units, were employed in
the development of the CAM02-UCS model. In this paper,
we use CIELAB and CAM02-UCS for our analyses. We use
the LAB implementation of D3 [5], which assumes a D65

standard illuminant as the white point. For CAM02-UCS, we
use Connor Gramazio’s JavaScript implementation [16].

While uniform color models offer useful approximations of
perceived color difference, they omit factors that may influ-
ence color perception. Properties of the color stimuli, such
as the size of the color patches [10, 39], the spatial distance
between two colors [9], and the geometric mark types [40] can
modulate color discriminability. In addition, the surrounding
context in which the color is presented can result in large dis-
tortions of color perception due to simultaneous contrast [7,
11, 42]. Even when model predictions rigorously align with
perceived differences, color distance models do not account
for visual aesthetic experiences as in color harmony [11] and
aesthetic preference [32] theories. Demographics and color
vision variations of the viewers may also affect our ability to
discriminate colors [34]. In our experiments, where possible
we seek to control factors that may interfere with color per-
ception, but we acknowledge we have limited environmental
control given our use of crowdsourcing platforms.

In addition to perceptual modeling efforts, psychologists have
investigated the extent to which the linguistic labels assigned
to colors shape our perception (see Regier & Kay [33] for a
survey). A number of controlled experiments find that color
naming can affect categorization and memory. For example,
Russian speakers may more quickly discriminate two different
shades of blue, as the Russian vocabulary contains two basic
color terms for blue [45].

To quantify the association of names to color, researchers have
proposed various models. Chuang et al. [12] formulate a non-
parametric probabilistic model and introduce a measure of
name saliency based on the entropy of the probability distri-
bution. Heer & Stone [21] extend this model to introduce
similarity metrics of color names, and contribute a mapping
between colors and names by applying the model to a large
web survey containing over 3 million responses. We use their
model in our analyses of color naming in this paper. These
models provide measures to quantitatively analyze categorical
perception effects due to color names.

Colormap Design & Evaluation
As color is an important visual channel in visualization, the
design of appropriate colormaps has received much attention
(see [37] or [46] for surveys). Predefined colormaps are devel-
oped based on perceptual and cognitive heuristics, designer
experience, application of color models, empirical data from
experiments, or a combination thereof. For example, the Col-
orBrewer [18] schemes are informed by color theory, with the
final colors hand-tuned for aesthetic appearance. The design
of the viridis [38] colormap focuses on perceptual uniformity,
ramping in both hue and luminance through equal steps in the
CAM02-UCS color space.

A number of interactive systems and algorithms also exist
to aid users in constructing or selecting color schemes. The
early PRAVDA system [3] takes into consideration data types,
anticipated tasks, and perceptual properties when recommend-
ing appropriate colormaps. Subsequent research focuses on
perceptual saliency [25], separation [19], semantic resonance



of color/category associations [27], visual aesthetics [41] and
energy consumption of display devices [13]. Colorgorical [17]
combines the scores of perceptual distances, color names, and
aesthetic models to automatically generate categorical palettes.

Prior work has also sought to empirically evaluate univari-
ate quantitative color encodings [7, 20, 31]. Ware [42] con-
ducts multiple experiments to evaluate (1) how accurately do
people extract metric information from color encodings and
(2) how well do colormaps preserve the form, or gradient
of the underlying data. A recent work by Ware et al. [44]
compares six colormaps, testing the highest visible spatial
frequencies at varying locations. Brewer et al. [8] evaluate
eight discrete schemes in supporting visualization tasks on
choropleth maps. While we also provide a comparative analy-
sis of quantitative colormaps, we instead focus on comparing
single- and multi-hue colormaps in supporting similarity judg-
ments. The “Which Blair Project” [35] develops an interesting
perceptual method to evaluate luminance monotonicity of col-
ormaps, which relies on our ability to distinguish human faces.
Kindlmann et al. [22] further extend the idea to propose a
technique for luminance matching. These two studies focus
on luminance; here we are interested in assessing judgment
performance across both hue and luminance.

EXPERIMENTAL METHODS
Our objective was to assess the effectiveness of each colormap
for encoding scalar information. As prior work establishes that
color is a poor visual channel for precise magnitude estima-
tion [14], we are less interested in how well people extract the
exact metric quantity from the colormap. Instead, we focus on
ordinal judgments of relative difference: given a reference data
point, how well can people judge which other points are most
similar? We carried out a suite of three experiments to com-
pare the perception of relative distances encoded by colormaps.
Each experiment focused on a subset of colormaps in a within-
subjects design; we ran a separate experiment for each group
of colormaps in order to mitigate fatigue effects. To check the
robustness of our results, we replicated two colormaps across
groups. The general methods of each experiment are identical.

Task
Our experiments used an ordinal triplet judgment task: given
a reference color and two alternative stimuli sampled on either
side of the reference, participants judged which of the response
stimuli is closest in distance to the reference. We selected
this task for multiple reasons. First, compared to direct value
estimation, a binary forced-choice response shifts the emphasis
to more rapid, perceptual judgments. We are less interested
in value estimation because other visual channels, such as
position and length, are far superior than color in this task [14].
For example, viewers of a choropleth map of employment data
likely spend more time comparing colored regions than they
do resolving these to absolute values, answering questions
such as “which U.S. state has a rate most similar to Michigan:
Wisconsin or Ohio?” Second, compared to a simpler pair-wise
ordinal task (i.e., participants see two stimuli and judge which
represents a larger value), triplets allow us to assess distance,
not just ranking relationships. Triplet judgments are more

Figure 2: Experiment interface. Participants see a reference
stimulus along with two choices, and pick which of these
alternatives is closer in distance to the reference.

difficult than simple rank-order judgments, and so more likely
to reveal discrepancies in colormap performance.

A color legend was included for reference in each presenta-
tion. We supplied the legend because legends influence color
judgments in real world visualization tasks, potentially with
conflicts between what one perceives with the colors alone
and what one effortfully “reads” from the legend.

Stimuli
We included four single-hue and five multi-hue colormaps in
our studies, grouped into the three sets shown in Figure 1. We
use the term single-hue to denote colormaps varying primar-
ily in luminance. Due to hand-tuning, the ColorBrewer [18]
sequential colormaps we chose have subtle variations in hue,
with the exception of greys. The first group (assorted col-
ormaps) aimed to compare representative colormaps from
four distinct types, following an extended version of Brewer’s
taxonomy [6]. We picked viridis from the multi-hue sequential
type, blues from the single-hue sequential type, blueorange
from the diverging type, and jet – long the default in MAT-
LAB – to represent rainbow colormaps. The other groups
focus on single-hue and multi-hue sequential variants. The
second group (single-hue colormaps) includes greys (a base-
line condition with purely achromatic shades), along with
blues, greens, and oranges, three hues that occupy relatively
opposing regions of LAB space. The third group (multi-hue
UCS colormaps) includes multi-hue colormaps created using
the UCS color space: viridis, magma, and plasma.

We rendered each visual stimulus as a 50× 50 pixel color
square against a white background. Admittedly, placing large
color patches on a uniform background differs from many
real-world heatmaps, and one might see additional effects in
scalar field contexts (e.g., due to gradients). For this study, we
chose to stay closer to the conditions for which the underlying
color models are defined, contributing an actionable baseline
for comparing colormaps and a comparison point for future
studies. We controlled the size of the color patches, the back-
ground color, and the spatial layout of the stimuli to mitigate



potential confounds with mark size, simultaneous contrast,
and spatial distance [9, 39]. We focused on white backgrounds
as they are most common in both print and on-screen.

We generated the trial stimuli for each colormap in the fol-
lowing way. Assuming a data domain of [0,100], we first
sampled reference points along uniform data value steps of
10 units along the color scale. For each reference point, we
then sampled comparison values: one of lower value than the
reference, and one higher. In each trial, one of these points is
systematically farther away than the other.

We generated comparison points offset from the reference
point using spans (total difference between highest and lowest
point) of 15, 30, and 60. We included two trials for each
combination of reference and span: one in which the lower
value is nearer the reference, and vice versa. As a concrete
example, for a reference of 50 and span 60 the sampled triplets
are (30, 50, 90) and (10, 50, 70). To encourage a similar
difficulty across spans, we adopted the logic of the Weber-
Fechner Law [15], which predicts that the perceived change
is in constant ratio to the intensity of the initial stimuli. In
our case, we placed the more distant response stimulus at
twice the distance (in data units) from the nearer. Pilot studies
confirmed that this choice resulted in reasonable yet suitably
difficult tasks; an earlier iteration with an offset half this size
resulted in roughly double the error rate.

After generating all triplets, we discarded reference/span com-
binations with values outside the [0,100] domain. This re-
sulted in too few trials in the span 60 condition, so we intro-
duced two additional reference values (45, 55) for this span
level only. This procedure produced 42 trials per colormap.

Participants
We recruited subjects via Amazon’s Mechanical Turk (MTurk)
crowdsourcing platform. Prior research has established the va-
lidity of crowdsourcing experiments for controlled quantitative
modeling in color perception [34, 40]. While we sacrificed
control over monitor display and situational lightning con-
ditions, we gained samples from a wider variety of display
conditions in the real-world web user population. In addi-
tion, the variance introduced by viewing conditions is partly
accounted for by per-subject random terms in our statistical
models. Each experiment run was implemented as a single
Human Intelligent Task (HIT) to ensure a within-subjects de-
sign. We restricted the participants to be within the United
States and to have an acceptance rate over 95%.

Procedure
We first screened the participants for color vision deficiencies
using four Ishihara plates. As factors including uncalibrated
displays and image compression can make Ishihara plates un-
reliable, we also stated in the consent page that participants
must have normal color vision. The participants then read a tu-
torial page with a sample question, which encouraged them to
use the color legend, explaining that the correct answer should
be deduced from value differences in the legend. Prior to the
experiment, we administrated a practice session consisting of
5 trials from an irrelevant colormap to reduce learning effects.
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Figure 3: Log response time by colormap for each study.
Plots depict bootstrapped means, with 50% (thick) and 95%
(thin) CIs. (a) Assorted colormaps. The single-hue colormap
blues is the fastest, followed by viridis. The rainbow colormap
jet is the slowest. (b) Single-hue colormaps. Subjects spent
almost identical time on average on each colormap. (c) Multi-
hue colormaps. UCS multi-hue colormaps are comparable in
speed. Viridis is slightly faster, but not significantly so.

Participants completed blocks of trials for each colormap, with
an option to take breaks between sessions to mitigate fatigue.
We asked subjects to respond as quickly and accurately as pos-
sible, prioritizing accuracy. We counterbalanced the colormap
order using either a Balanced Latin Square or a full permuta-
tion of all possible orders, depending on the total number of
colormaps in each study. We randomized the question order
for each colormap. An engagement check question appeared
randomly per colormap block to ensure attentive participation.

In each trial, we simultaneously presented the three color
stimuli arranged in a triad, with a legend that included ticks
at each 10 unit interval (Figure 2). Participants responded by
clicking on the choice square and clicking the “Next” button,
or by pressing the “a” or “b” key followed by “enter”.

Data Analysis
Our primary dependent variables are log-transformed response
time (RT) and an error label, indicating whether a subject
answered the question correctly. Observing that RT follows
a log-normal distribution, we performed log transformation.
The error response uses a binary coding of 1:error, 0:correct.
To visualize effect sizes, we calculate bootstrapped confidence
intervals (created by sampling entire subjects, not individual
responses, with replacement) and plot both 50% and 95% CIs.

Previous quantitative modeling on color perception has fit lin-
ear models to the mean proportion of response, obtained by
averaging individual binary outcomes per cell [39, 40]. This
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Figure 4: Error rate by colormap for each study. Plots
depict bootstrapped means, with 50% (thick) and 95% (thin)
CIs. (a) Assorted colormaps. Viridis excels in accuracy while
jet is the most error-prone. (b) Single-hue colormaps. Though
slightly faster, blues and greens have overlapping confidence
intervals with the slower colormaps, oranges and greys. (c)
Multi-hue colormaps. Multi-hue colormaps have comparable
accuracy within group. The per-colormap average error rate
of magma is higher as it contains degenerate cases.

approach discards a large portion of the individual variance.
As a result, the fitted model describes the mean performance
from a sample group of the population, but not the perfor-
mance of any individual.

In this paper, we instead fit models to individual observations,
using linear mixed-effects models for RT and logistic mixed-
effects models for error (using the lme4 package in R [2]).
Mixed-effects models can incorporate random effect terms to
account for variation arising from subjects as well as other
sources. In our models we include fixed effect terms for col-
ormap, span, and their interaction. Following Barr et al. [1],
we also include maximal random effects structures with per-
subject terms for random intercept (capturing overall bias) and
random slopes for each fixed effect (capturing varied sensi-
tivities to experiment conditions). As we later show, specific
colors may exhibit outlying performance relative to a colormap
as a whole. In response, we include random intercepts for each
unique reference color (i.e., colormap / reference value pair)
to improve generalization of fixed effect estimates.

EXPERIMENTAL RESULTS
We now present the results from our three experimental runs.
We first share the results from each colormap group, and then
investigate special cases with surprisingly low or high error
rates. Figures 3 and 4 show global time and error estimates

per colormap. Figures 5, 6, 7, and 8 provide more detailed
plots across span and reference conditions.

Across colormap groups we conducted a diagnostic analysis
before examining time and error separately. In all cases we
note a similar, positive correlation between response time and
error: on average, subjects spend more time on the more diffi-
cult cases. This result suggests that the performance measures
are not simply the result of varied speed/accuracy trade-offs.

Assorted Colormaps
A total of 56 subjects (19 female, 36 male, 1 other, µage = 35.3
years, σage = 8.9 years) participated in the assorted colormap
study. Subjects completed the study in 15 minutes on average
and were compensated $2.00 USD.

Time: Blues & Viridis are Faster than BlueOrange & Jet
Likelihood ratio tests of linear mixed-effects models for log
response time found significant main effects for colormap
(χ2(9) = 60.5, p < 0.001), span (χ2(8) = 60.0, p < 0.001),
and their interaction (χ2(6) = 26.3, p < 0.001). To compare
response times across colormaps, we applied post-hoc tests
with Holm’s sequential Bonferroni correction. We find that
both blues and viridis are significantly faster than blueorange
(p < 0.01, both cases) and jet (p < 0.001, both cases). The
difference in means between blues and viridis is not significant,
nor is the difference between blueorange and jet.

With respect to span, subjects performed significantly slower
when the span was 60 compared to a span of 30 (p < 0.01) or
15 (p < 0.05). The significant interaction between colormap
and span stems primarily from blues, which was relatively
slow for small spans. As we will discuss shortly, this decrease
in performance correlates with more pronounced errors.

Subjects made faster judgments with the viridis and blues
colormaps and spent more time determining distances with
blueorange and jet, presumably because the distances are
not as apparent. This discrepancy may result from increased
effort discerning perceptual similarities and/or consulting color
legends. Across all colormaps, more time was needed when
colors were further apart in the color scale.

Error: Viridis Excels; Blues Degrades for Low Spans
Tests of logistic mixed-effects models for error again found sig-
nificant effects of colormap (χ2(9) = 46.0, p < 0.001), span
(χ2(8)= 42.9, p< 0.001), and their interaction (χ2(6)= 28.6,
p < 0.001). Post-hoc tests revealed that viridis is less error-
prone than blues and jet (both p < 0.001). Across colormaps
participants made fewer mistakes on average in the smallest
span compared to other levels (both p < 0.001). The interac-
tion effect again stems from the differential characteristics of
blues: when the span was small, error increased. An example
of such triplets is (20, 30, 35).

In a follow-up analysis where for all colormaps we dropped
responses for span 15, a significant effect of colormap on error
rate (p < 0.001) remains, but without a significant interaction.
In this case we did not observe a significant difference between
viridis and blues in error rate, but blues outperforms jet and
blueorange (p < 0.05).
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Figure 5: Log response times by span and reference for assorted colormaps. Points indicate bootstrapped means, along with
50% (thick) and 95% (thin) CIs. Each sub-plot includes the mean value for each span level (dotted grey line). Across colormaps,
response times increase with larger spans. Jet exhibits the longest response times.
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Figure 6: Error rate by span and reference for assorted colormaps. Points indicate bootstrapped means, along with 50% (thick)
and 95% (thin) CIs. Each sub-plot includes the mean value for each span level (dotted grey line). Viridis exhibits consistently low
error across the board. The accuracy of blues matches that of viridis at larger spans, but drops notably for the smallest span. The
blueorange diverging scheme exhibits errors when comparison is made across the central blue-orange hue boundary.

Summary
In this study, viridis demonstrated both superior speed and ac-
curacy. Blues performed comparably well at spans 30 and 60:
it was fast and accurate so as long as there was sufficient spac-
ing between adjacent colors. However, once the colors were
too close in the color scale, the accuracy of blues dropped con-
siderably, together with a mild increase in response time. The
diverging colormap blueorange and the rainbow colormap jet
were both slower and more error-prone. We examine special
cases affecting these latter two colormaps later in the paper.

Comparing with the subsequent studies, we note similar error
results for replicated colormaps, but systematically lower re-

sponse times in the assorted colormaps group (Figure 3). We
attribute this disparity in part to individual differences. For ex-
ample, 64.3% of participants were male in the assorted group,
while single-hue and multi-hue groups were 33.9% and 42.6%
male respectively. In a linear mixed-effects model of RT with
gender as the fixed effect, fit to data from all three experiments,
the male group was significantly faster (p < 0.01). We found
no significant effect of gender in a similar model for error.

Single-Hue Colormaps
56 subjects (36 female, 19 male, 1 other, µage = 37.2, σage =
11.1) were assigned single-hue colormaps. Subjects averaged
15 minute sessions and were compensated $1.60 USD.
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(thick) and 95% (thin) CIs. Each sub-plot includes the mean value for each span level (dotted grey line). All single-hue colormaps
similarly suffer from resolution issues when the span is small. Greys degenerates in low luminance regions.
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Figure 8: Error rate by span and reference for multi-hue
UCS colormaps. Points indicate bootstrapped means, with
50% (thick) and 95% (thin) CIs. Each sub-plot includes the
mean value for each span level (dotted grey line). We observe
similar dynamics across colormaps. Performance degrades in
the dark region of magma, and to a lesser extent of plasma.

Time: No Differences in Single-Hue Responses
In a linear mixed-effects model of RT, we found a signifi-
cant effect of span (χ2(8) = 39.9, p < 0.001), but not for
colormap or their interaction. This result is consistent with
the per-colormap means plotted in Figure 3: participants have
similar response times (∼ 103.39 = 2,454 milliseconds) for
each colormap in the single-hue group.

Error: Single-Hue Colormaps Suffer from Low Resolution
Tests with a logistic mixed-effects model of error found a
significant effect of span (χ2(8) = 86.0, p < 0.001), but no
significant colormap or interaction effect. This result is con-
sistent with Figure 4: despite lower means, 95% CIs for blues
and greens overlap with those for oranges and greys. Looking
across studies, we see very similar error profiles for blues in
Figures 6 and 7, indicating successful replication.

Post-hoc comparisons confirmed that error rates for span 15
are significantly higher than span 30 (p < 0.05) or span 60
(p < 0.05). This result corroborates the increased errors for
blues in low-span cases in the prior study, and extends it to a
larger family of single-hue colormaps. These colormaps suffer
from poor resolution for nearer value comparisons.

To further test this claim, we calculated the LAB distances be-
tween the reference stimulus and the two choices respectively,
and subtracted them to obtain a difference measure in units
of ∆E. We found that in low-span conditions where accuracy
plummets, the ∆E difference is around 5, close to the just-
noticeable difference (JND) found in practical situations [39,
40]. Though the ∆E between each stimulus is large enough for
the colors to be distinguishable, the difference in ∆E between
pairs is hard to discriminate, leading to increased error.

Multi-Hue UCS Colormaps
54 subjects (31 female, 23 male, µage = 36.7, σage = 10.1)
participated in the multi-hue colormap study. We discarded



data from 1 subject (2%) due to missing responses. Subjects
averaged 12 minute sessions and paid $1.20 USD.

Time & Error: Multi-Hue Colormaps are Comparable
Analysis of the multi-hue UCS colormaps detected no signifi-
cant differences between colormaps in terms of either response
time or error rate. Figure 3 shows that the mean response times
align around 2.82 seconds (103.45 milliseconds). Similarly, the
mean error rates of viridis and plasma are slightly lower than
that of magma, but exhibit overlapping 95% CIs (Figure 4).
The more detailed plots in Figure 8 reveal spikes in error rate
for magma, and to a lesser extent plasma, around low reference
values. We examine this issue further in the next section.

Multi-Hue UCS Colormaps have Lowest Error Across Studies
Comparing across studies, the error profiles for viridis in Fig-
ures 6 and 8 are quite similar, indicating successful replication.
We see that across studies the UCS colormaps exhibit the
lowest error rates, though with slightly longer response times.

Analysis of Special Cases
The above section analyzes colormaps in terms of their mean
performance, with models that include random effects to ac-
count for some of the larger swings among specific reference
points. Here we perform a complementary analysis, investigat-
ing the specific conditions in which error rates are surprisingly
high or low. We take a closer look at (1) error increases in
low luminance conditions (greys, magma, plasma), (2) the
performance of the diverging blueorange colormap, and (3) a
special case where jet – the colormap with worst performance
overall – exhibits extremely low error.

Performance Degrades in Low Luminance Regions
An obvious abnormality across studies and colormaps is a
dramatic increase of error rates in the black regions, particu-
larly greys, magma, and, to a lesser degree, plasma (Figures 7
and 8). For example, the magma triplets (0, 10, 15)
and (5, 10, 20) exhibit high error. The affected condi-
tions all involve small values in the luminance channel; the
low luminance level appears to afford much worse color dis-
crimination than that predicted by either the LAB or UCS
perceptual models. This observation is likely specific to our
choice of a white background, with the high contrast impeding
the discrimination of dark shades. We hypothesize that an
analogous shortcoming will occur for high luminance shades
set against a dark background.

BlueOrange Suffers when Values Straddle the Mid-Point
A closer look at blueorange suggests a primary source of
errors (Figure 6). When all three triplet colors lie on a single-
hue half of blueorange, the performance closely matches that
of the corresponding single-hue colormap. For example, the
first three points in the small span plot of blueorange average
about 10%, similar to the mean error rates of blues for the
medium span (Figure 6, 7). Note that we double the span
to compare to single-hue colormaps, as each hue takes up
one-half of the range of the diverging colormap. As indicated
by the high error rates in the middle of blueorange, subjects
were prone to mistakes when making comparisons across the
blue-orange boundary. A representative triplet is (50,
60, 80), where the lower, achromatic option is closer than the

similarly-hued, but much more saturated, option. This result
suggests that diverging colormaps may be less accurate in
situations involving comparisons with the mid-point, perhaps
due to erroneous grouping of chromatic colors versus a nearer
achromatic color.

Where the Rainbow Shines: Color Name Association
Though the majority of reference stimuli in jet lead to higher
error than other colormaps, reference value 50 performs re-
markably well at span 15 (Figure 6). In the small span con-
dition this reference point has a mean error rate as low as
3.5%, which is among the lowest in all observations! The
corresponding color triplets are (40, 50, 55) and
(45, 50, 60). These triplets lie in an isoluminant region of jet:
there are no luminance cues that might suggest ordering. In-
stead, these triplets happen to straddle color name boundaries
that align with the underlying value differences. Color name
distances [21] from the reference average 0.23 and 0.94 for
the nearer and further values, respectively. The first triplet has
modal names of cyan versus two greens, while the second
triplet has two greens versus yellow. This result suggests
that categorical effects, or banding by name, can contribute to
improved discrimination if applied in the right direction and,
conversely, may hamper perception if dischordant with the
true value difference.

COLOR MODEL ANALYSIS
In addition to empirical characterization of user performance,
we would like to have a theoretical model. For example, given
a previously untested colormap, might we predict its relative
performance? If so, we could use the model to automatically
optimize colormap designs. To assess this question we con-
struct a series of models that attempt to generalize beyond the
specific colormaps using a set of three color distance models:

• LAB: The CIELAB color space [24].
• UCS: The CAM02-UCS uniform color space model [28].
• Name: The color name model of Heer & Stone [21].

The first two color models (LAB and UCS) provide perceptual
color spaces that approximately model perceptually uniform
color distances. We include both for comparison. For LAB,
we use Euclidean distance (∆E) to measure color distance.
The third model (Name) is a model of categorical effects that
measures color difference by comparing the distributions of
observed color terms (e.g., orange, blue, fuchsia) that people
use to label color swatches. The Name model is included to
capture categorical effects of color naming that may not be
reflected by the perceptual models. Following prior work [21],
we use a cosine distance measure between color term vectors.

To apply these measures to a triplet comparison task, we first
compute the color model differences between the reference
stimulus and the two response stimuli. We then calculate the
difference of the predicted color model distances; i.e., we sim-
ply subtract the distance value for the correct answer from the
distance value for the incorrect answer. A negative difference
indicates that the correct answer (the more similar data value)
is further away according to the distance measure. A positive
difference indicates a larger distance for the incorrect answer
(the more dissimilar data value).



Model df AIC BIC logLik deviance

LAB 24 21668 21863 -10810 21619
UCS 24 21665 21860 -10808 21617
Name 24 21585 21781 -10769 21537
UCS + Name 63 21308 21821 -10591 21182
UCS * Name 288 21377 23723 -10401 20801

Table 1: Diagnostics for error models based on color model
distances. Columns indicate degrees of freedom (df), AIC
and BIC model selection scores, log-likelihood (logLik) and
deviance. An additive model with UCS and color name dif-
ference terms achieves the best balance of fit and parsimony
according to AIC and BIC scores (lower is better).

Error Analysis
To predict error rates, we fit a logistic regression model. We
use mixed-effects models with random effect terms for both
subject (to account for variance due to individual differences)
and colormap (each trial includes presentation of a color leg-
end, and we account for this in order to estimate more gen-
eralizable fixed effects). We use maximal random effects
structures [1], with intercepts for each random effect and cor-
responding random slope terms for each fixed effect.

We first assessed which form the predictor should take. We
examined both direct use of color model difference estimates
(a continuous, linear predictor) and binned factors based on
quartile boundaries (a discrete, potentially non-linear predic-
tor). All fitted models exhibit statistically significant fixed
effect estimates, via both Wald z-tests and Likelihood Ratio
tests. The binned predictor leads to better models for all color
difference types: with improved fit (log-likelihood and de-
viance) and lower model selection scores (AIC, BIC). As a
result, we focus on the discrete predictors.

Next, we compare these single-effect models to assess perfor-
mance differences among color difference types. Which color
model most accurately predicts performance? Table 1 shows
the resulting model diagnostics. We see that name difference
performs the best according to all measures. The UCS model
outperforms LAB, but by a miniscule margin. Overall, the
differences between the three models are small.

We then fitted two-factor models that include perceptual and
categorical terms. For the perceptual term we chose UCS
rather than LAB for two reasons. First, UCS performs slightly
better than LAB as a single predictor. Second, the color name
model internally applies a fine-grained discretization of the
LAB color space, and so is likely to exhibit higher correlation
with LAB. We built models both with and without interaction
terms. The last two rows of Table 1 show the resulting model
diagnostics. Both models improve upon the single-factor mod-
els in terms of fit and AIC score. The model with interaction
terms exhibits improved fit (higher log-likelihood and lower
deviance), but this is unsurprising given the greater degrees of
freedom. The additive model has lower AIC and BIC scores
than the full model, indicating a more parsimonious model.
To avoid overfitting, we stop with the additive model.

Parameter Estimate Std. Error P-Value

Intercept -1.0848 0.1804 < 0.001 ***
UCS_Q2 -0.4031 0.2043 0.048 *
UCS_Q3 -0.5298 0.1618 0.001 **
UCS_Q4 -0.4452 0.2482 0.073 .
Name_Q2 -0.5009 0.1641 0.002 **
Name_Q3 -0.6309 0.1621 < 0.001 ***
Name_Q4 -0.6207 0.1336 < 0.001 ***

Table 2: Fixed effect parameter estimates and p-values for a
logistic regression model (UCS + Name) of judgment error.
Increasing UCS and Name difference lead to lower error, but
this effect attenuates in the highest quartile.

Table 2 shows the coefficients of the resulting model. The
intercept term is the logit value for triplets with difference val-
ues residing in the first quartiles for both UCS and Name. As
the color differences increase, we see increasingly negative co-
efficients, indicating lower error rates. However, for both UCS
and Name this trend tapers off for the highest quartile (Q4):
relative to the earlier quartile (Q3), the error slightly increases
for the largest color differences. This effect may stem from
issues with large distances in perceptual color spaces: percep-
tually uniform color spaces were constructed in accordance
with empirical color discrimination judgments at a small scale
(e.g., 10-20 ∆E [28]). As a result, longer scale distances in
these models are known to be more inaccurate.

How well do these color models predict user performance
overall? To assess this question, we can use the additive model
to predict the average performance across all experimental
conditions. While this is “testing on the training data” and so
not a means of assessing generalization, it nevertheless serves
as a useful diagnostic. Comparing the model’s predicted error
rates with the observed rates via standard linear regression,
we achieve of an R2 value of 0.108. In other words, our fitted
model only explains about 10% of the observed variance.

We can also examine model predictions for the average perfor-
mance of each colormap: does our model rank the colormaps
in an order similar to the observed error rates? The Spear-
man rank correlation between the model predictions and the
observed empirical error rates (ρ = 0.45) is not high and not
statistically significant. In short, the fitted model does an un-
satisfactory job of predicting overall colormap performance.

Time Analysis
To analyze timing responses, we followed a similar procedure
as we did for the error analysis, but using linear mixed-effects
models of the log-transformed response times rather than lo-
gistic regression. Once again, the binned variants outperform
the linear predictors. For the single-factor models, UCS out-
performs LAB, which outperforms Name. Comparing a full
model with UCS, Name, and interaction terms to a model
without an interaction term again finds that the full model
exhibits worse AIC and BIC scores.

Using the additive (UCS + Name) model to predict per-
condition average response times in the log domain results in



an R2 value of 0.244, accounting for 24% of the observed vari-
ance. The rank correlation of observed per-colormap average
responses with model predictions (ρ = 0.67) is higher than
for error, but again is not statistically significant.

Summary
Combining perceptual color models and color naming models
leads to higher predictive accuracy for both time and error
than either alone. This suggests that lower-level perception
and language-level processes may both play a role in the in-
terpretation of quantitative color encodings. We also observe
that increasing perceptual and name differences correlate with
higher judgment accuracy, but that this trend is non-linear,
tapering off among the highest quartile of differences for both
measures. That said, we believe the primary take-away is a
need for caution, as neither the error model nor time model
lead to accurate prediction of the observed experimental results
(let alone for new, unseen conditions).

Improved models or measures could lead to more accurate
predictions of user performance. Some issues may arise from
the triplet comparison task: perceptual color models are fit
to pairwise discrimination judgments, and so may be less
well-suited for the comparison tasks studied here. Moreover,
our measures of difference do not take into account either
the relative color space locations or the magnitude of the
underlying color distances, only their difference. In addition,
the inclusion of color legends in each trial may affect the
predictive utility of color models. If our experiments were
re-run without a visible color legend – such that subjects must
make similarity judgments based on perception alone – it is
possible that the results might align more closely with color
model predictions. We leave exploration of these possibilities
to future research.

DISCUSSION AND FUTURE WORK
In this work we evaluated nine quantitative colormaps using
a relative similarity judgment task across varied spans of the
data domain. We found that more recent multi-hue colormaps
created using the CAM02-UCS color space – particularly
viridis – perform well in terms of time and error. Single-hue
colormaps perform well for larger data spans (i.e., judgments
made over larger scale ranges), but exhibit issues of insufficient
resolution at smaller spans. These results suggest that, by
ramping in both luminance and hue, multi-hue colormaps can
provide improved discrimination while preserving perception
of order. We found that a diverging blueorange colormap
performs similarly to the single-hue colormaps from which it
is composed, but exhibits increased error for comparisons that
straddle the mid-point. Finally, we confirmed that a rainbow
colormap (jet) does indeed perform the worst overall in terms
of both time and error, and should be jettisoned.

Our results provide actionable guidance for colormap design
and selection. First, we establish benefits for judiciously de-
signed multi-hue colormaps. In situations involving use of
a continuous color scale to visualize a scalar field (e.g., in
heatmaps), multi-hue colormaps may be preferable to single-
hue given their improved resolution. For applications involv-
ing discrete color scales (i.e., with 5-7 colors), single-hue

colormaps may still be acceptable; however, using a larger
number of bins can result in color differences that fall within
the low-span conditions studied here.

Second, we identify issues with low luminance regions set
against a white background. Across colormaps (greys, magma,
plasma), we observed much higher error rates despite similar
distance estimates from perceptual color space models. We
advise designers to avoid using these colormaps in situations
with a high-luminance background, and warn that similar is-
sues may arise when visualizing data using high-luminance
colors against a dark background.

In a subsequent modeling exercise, we found that a combi-
nation of perceptually-uniform color models and categorical
effects due to color naming can more accurately predict user
performance than either alone. Larger perceptual and categori-
cal differences correlate with improved accuracy, though with
slightly diminishing effects for extreme differences. However,
more work is needed to form more accurate models if we wish
to advance automated colormap design and evaluation.

One limitation of the present work arises from our exchange of
experimental control for ecological validity: through MTurk,
we give up control of the viewing environments, the visual
angle of the stimuli, along with other situational factors that
confound color perception. Another limitation comes from our
choice to present isolated color patches on a white background.
Though white backgrounds are the most common both in
print and on screen, our current setup is limited in its scope.
Our experiments might be extended to other backgrounds, for
example to see if analogous performance degradation occurs
for light colors set in a dark context.

We chose to conduct an experiment on triplet comparison
tasks in an abstracted context, configured to align with a stan-
dard observer model. However, visualizations in the wild
involve a larger array of simultaneously presented colors, of-
ten involving variably sized marks across a variety of spatial
configurations, and used for multiple perceptual tasks. These
differences may very well affect colormap performance, for
example due to simultaneous contrast. Similarly, while many
of our findings likely still hold in scalar field visualizations,
dedicated experiments in scalar field contexts might uncover
additional effects of spatial frequency and gradients. Though
our results provide actionable insights regarding the perfor-
mance of colormaps in comparison tasks, future work might
extend the findings to more real-world visualization examples.
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