6.859: Interactive Data Visualization **Exploratory Data Analysis**

Arvind Satyanarayan

Course Grading

Class Participation	5%
Reading Commentaries	5%
Ao: Sketching Visualizations	2%
A1: Visualization Design	3%
A2: Exploratory Data Analysis	10%
A3: White/Black Hat Visualization	15%
A4: Interactive Narratives	20%
Final Project	40%
Proposal	
MVP + Presentations	
Poster Session + Final Deliverables	

5 slack days which can be used as you wish for assignments.

Slack days should cover minor illnesses, special occasions (including religious holidays).

Additional extensions only granted for serious issues with a written note of support from S3 or GradSupport @ OGE.

Share your work on Slack to inspire your classmates + receive design feedback!

Expressiveness

A set of facts is *expressible* in a visual language if the sentences (i.e. the visualizations) in the language express all the facts in the set of data, and only the facts in the data.

> Data models give us a way of talking about this.

[Mackinlay 1986]

Mapping or Visual Encoding

Effectiveness

A visualization is more effective than another if the information it conveys is more readily perceived than the information in the other visualization

Visual

Image models give us a way of talking about this.

ame S Same

Tamara Munzner, Visualization Analysis and Design (2014).

Visualization Critique

What is this a visualization of?

Which of the visual encoding techniques we've discussed this week are being used? How effective or ineffective are they?

To help structure your critique:

- > "I like..."
- > "I wish..."
- > "What if...?"

Gun deaths in Florida

Number of murders committed using firearms

C. Chan 16/02/2014

How to Lie with Statistics: Stand Your Ground and Gun Deaths

Lisa Wade, PhD on December 28, 2014

At Junk Charts, Kaiser Fung drew my attention to a graph released by Reuters. It is so deeply misleading that I loathe to expose your eyeballs to it. So, I offer you this:

BEST OF 2014

Iraq's bloody toll

The United States officially marked the end of almost nine years of bloody military engagement in Iraq on Thursday. Over 4,800 coalition soldiers and tens of thousands of Iraqis lost their lives in a war that defined a decade.

US ground troops in Iraq

Others Britain 139 179

Coalition fatalities by area

Baghdad and the vast desert province of Anbar saw some of the fiercest fighting, the latter being the scene of sectarian tensions and a bloody Sunni insurgency

Iraq's bloody toll

6.859: Interactive Data Visualization **Exploratory Data Analysis**

Arvind Satyanarayan

Data Visualization

Acquisition Cleaning Integration Visualization Modeling Presentation Dissemination

Acquisition Cleaning Integration Visualization Modeling Presentation Dissemination

Data Provenance

- Who collected or produced it?
- What was their intent?
- Is it a reputable source?
- What are the motives of the data producer (are they can advocate or lobbyist?)

Data Provenance

Who collected or produced it?

- What was their intent?
- Is it a reputable source?

What are the motives of the data producer (are they can advocate or lobbyist?)

1970 and 2015. The GTD 2012 World Map is available here.

The Global Terrorism Database (GTD) is an open-source database including information on terrorist events around the world from 1970 through 2017 (with annual updates planned for the future). Unlike many other event databases, the GTD includes systematic data on domestic as well as international terrorist incidents that have occurred during this time period and now includes more than 180.000 cases. Learn more

Read more about Global Terrorism in 2017

GTD DATA VISUALIZATIONS

The GTD World Map: 45 Years of Terrorism displays terrorist violence that occurred worldwide between

- The GTD 2017 World Map is available here.
- The GTD 2016 World Map is available here.
- The GTD 2015 World Map is available here.
- The GTD 2014 World Map is available here.
- The GTD 2013 World Map is available here.

THIS DATE IN TERRORISM

February 9

2015 Bantacan, Philippines

02/09/2015: An explosive device was discovered and safely defused in Purok 1A area, Bantacan village, Compostela Valley province, Philippines. No group claimed responsibility for the incident; however, sources attributed the attempted attack to the New People's Army (NPA).

Learn more

2015 Logo district, Nigeria

02/09/2015: Assailants attacked residents and buildings in Logo district, Benue state, Nigeria. This was one of 24 coordinated raids on villages and communities in this area on February 9, 2015. At least 18 people were killed across attacks. No group claimed responsibility for the incident; however, sources attributed the attack to Fulani militants.

Learn more

FEATURED

Message from the Global Terrorism Database Manager

For more than a decade, START has compiled and published the Global Terrorism Database (GTD) for use by scholars, analysts, journalists, security professionals, and policy makers. It has been our privilege to work closely with these user communities to continually improve the data and inform stakeholders.

Since 2012, the majority of the costs of collecting the GTD have been funded by the U.S. State Department, for the past year almost exclusively. Our contract with the State Department ended in May 2018 and, although we received only positive feedback from the Bureau of Counterterrorism and our 2018 data collection was well underway, we recently learned that we were not awarded a follow-on contract for base data collection.

At the moment, the loss of the State Department funding means two things: First, we do not currently have funding to complete collection of 2018 data, nor are we able to publish data beyond 2017.

Data Provenance

When was the data collected?

Measurements can change over time.

Definitions/interpretations in quantification can change over time.

Is the data recent, and how much does that matter to the insight you wish to convey?

To help gauge each city's overall crime level, the FBI tracks eight "index crimes." From 1993 to 2010, Chicago's annual total dropped by 47 percent. But from 2010 to 2013, it dropped a stunning 56 percent, or nearly 19 percent per year, according to data from the Chicago Police Department.

The Three-Year Plunge

David Berstein & Noah Isackson. *Chicago Magazine*, April 2014.

000

Graph Viewer

Roll-up by:

A 11	•
All	· · ·

Visualization:

Node-Link	
-----------	--

\$

Sort by:

None

Edge centrality filters:

	Images
\checkmark	Animate

000

Graph Viewer

Roll-up by: All Visualization: Matrix

Sort by:

Linkage

Edge centrality filters:

.

. .

. .

. .

.

÷

+

÷

Images
Animate

Graph Viewer

ię.

. .

Missing Values

0 0

Graph Viewer

Roll-up by:

All

Visualization:

Matrix

Sort by:

None

Edge centrality filters:

2.21 $\mathcal{A}(T) \geq 0$ 1.1 210 10 C 10 C 1.2 . 18⁶ 14 C 1 1 1 الهيجا والمتحد والمحاد ter trasse Magnetic Congression of Second (a) (a) (b) (b) 1 E n fall hagen die gebeure gewone. Die werden die gebeure gebeure in a set for the state of the and a probability of the () gemetet e. 1000all an an an an 4.47

 $\{p_{i}, \dots, p_{i}\}$

Constantly, 1

 $\{\overline{1,2},\overline{1}\}$

12.0

- - - - V.C.

1.1

الهداد الجرارات

....

通知

A CONTRACTOR OF A

t in the second

n (general des reformes) en anticipation de la seconda En la general de la seconda de la seconda

1.12

- **1** - 1

1 AN 14

a nd da Aran

.....

.

2.2

 $\{ f_{i}^{(n)} \}_{i \in \mathbb{N}}$

÷

÷

\$

요구는 10.7

 $(x_i) \in \mathcal{X}$ n a shekara a shekara a shekara t

Images

Animate

Graph Viewer

الاعتمار بالإحرابة ويهادون فالمراكبان 62 M ألفنا وتعجب بسوعات $\{ e^{i t} : t \in [t_i] : i \in [t_i] \}$ いが速すい 法法理的 的复数形式 医肾盂囊炎 化丁 ang kanala di katipang kanalara - 1 I I I 法法公理 n na mar an Air an A enter en la compañía de la compañía Na esta de la compañía A 41 A 11 10 C 10 C 10 C 13 (A) and the second 1.125 お新建築的 ポイト とついた (1997) 法法律性 网络 - 81 奥然り進 たいかい 2010 CARDON 1 m - 10 ang kabupatèn kabupat an an an An 1.1.1 20 A 24 11 C 11 C 11 C 11 11110-011-022 dia da la

Berkeley Cornell Harvard Harvard University Stanford Stanford University UC Berkeley UC Davis University of California at Berkeley University of California, Berkeley University of California, Davis

"The first sign that a visualization is good is that **it shows you a problem in your data**. Every successful visualization that I've been involved with has had this stage where you realize, "Oh **my God, this data is not what I thought it would be!**" So already, you've discovered something."

> – Martin Wattenberg Co-lead of Google's People + Al Initiative ACM Queue, Mar 2010

alization & Exploration Environme	ent			
	Alleged Offense:	ALL A B	CD EFGHLMNR	STUV
p 522 ale casian ce Georges	Offense Level:	 I - Status 2 - Misd 3 - Narco 4 - Misd 5 - Other 	s Offenses emeanors Type II otics Possession emeanors Type I	☐ 6 - Sei ☐ 7 - Dru ☐ 8 - Fei ☐ 9 - Vic
en nquent	County (Off):	ALL H A B C	D FGH K MOPQ	s TW
AS /lisdemeanc ce Georges 70	Area:		☐ Out of State	e
729 ed	Office:	600	91800	
	Intake Decision:	 Closed Disappro Formal (I Formal (I 	oved Petition Authorize) SA Office)	 Informal Pending Reverse
80 90 Age	TC Reset	t Quit		

alization & Expl	oration Environmen	t					
		Alleged Offense	ALL A B	CD EFGHLMNR	STUV		
p 522 ale		Offense Level:	☐ 1- Statu ☐ 2 - Misu ☐ 3 - Naro	us Offenses demeanors Type II cotics Possession	☐ 6 - Sei ☐ 7 - Dru ☐ 8 - Fei		
casian ce Georges 70 706			 ☐ 4 - Misdemeanors Type I ☐ 9 - V ☐ 5 - Other Felony 				
en nquent		County (Off):	ALL A B C	D FGH K MOPQ	s tw		
AS /lisdemeanc ce Georges 70 10 729 ed	Maraud Centena	ing rians!		☐ Out of Stat	e		
		Office:	600	91800			
		Intake Decision:	 Closed Disappr Formal Formal 	roved (Petition Authorize) (SA Office)	 Informal Pending Reverse 		
80) Age	90	TC Reset	Quit				

alization & Expl	oration Environmen	t					
		Alleged Offense	ALL A B	CD EFGHLMNR	STUV		
p 522 ale		Offense Level:	☐ 1- Statu ☐ 2 - Misu ☐ 3 - Naro	us Offenses demeanors Type II cotics Possession	☐ 6 - Sei ☐ 7 - Dru ☐ 8 - Fei		
casian ce Georges 70 706			 ☐ 4 - Misdemeanors Type I ☐ 9 - V ☐ 5 - Other Felony 				
en nquent		County (Off):	ALL A B C	D FGH K MOPQ	s tw		
AS /lisdemeanc ce Georges 70 10 729 ed	Maraud Centena	ing rians!		☐ Out of Stat	e		
		Office:	600	91800			
		Intake Decision:	 Closed Disappr Formal Formal 	roved (Petition Authorize) (SA Office)	 Informal Pending Reverse 		
80) Age	90	TC Reset	Quit				

Big Data Borat @BigDataBorat

In Data Science, 80% of time spent prepare data, 20% of time spent complain about need for prepare data.

6:47 PM - 26 Feb 2013

"I spend more than half of my time integrating, cleansing and transforming data without doing any actual analysis. Most of the time I'm lucky if I get to do any "analysis" at all."

> - Anonymous Data Scientist [Kandel et al. VAST 2012]

Bureau http://	of Justice Stati ⁄bjs.ojp.usdoj.go	istics – Data Online DV/			
Reporte	ed crime in Alaba	ama			
Year 2004 2005 2006 2007 2008	Population 4525375 4029.3 4548327 3900 4599030 3937 4627851 3974.9 4661900 4081.9	Property crime rate 987 2732.4 309.9 955.8 2656 289 968.9 2645.1 322.9 980.2 2687 307.7 1080.7 2712.6 288.6	Burglary rate	Larceny-theft rate	Motor vehicle theft rate
Reporte	ed crime in Alask	a			
Year 2004 2005 2006 2007 2008	Population 657755 3370.9 663253 3615 670053 3582 683478 3373.9 686293 2928.3	Property crime rate 573.6 2456.7 340.6 622.8 2601 391 615.2 2588.5 378.3 538.9 2480 355.1 470.9 2219.9 237.5	Burglary rate	Larceny-theft rate	Motor vehicle theft rate
Reporte	ed crime in Arizo	ona			
Year 2004 2005 2006 2007 2008	Population 5739879 5073.3 5953007 4827 6166318 4741.6 6338755 4502.6 6500180 4087.3	Property crime rate 991 3118.7 963.5 946.2 2958 922 953 2874.1 914.4 935.4 2780.5 786.7 894.2 2605.3 587.8	Burglary rate	Larceny-theft rate	Motor vehicle theft rate
Reporte	ed crime in Arkan	nsas			
Year 2004 2005 2006 2007 2008	Population 2750000 4033.1 2775708 4068 2810872 4021.6 2834797 3945.5 2855390 3843.7	Property crime rate 1096.4 2699.7 237 1085.1 2720 262 1154.4 2596.7 270.4 1124.4 2574.6 246.5 1182.7 2433.4 227.6	Burglary rate	Larceny-theft rate	Motor vehicle theft rate
Reporte	ed crime in Calif	fornia			
Year 2004 2005 2006 2007 2008	Population 35842038 36154147 36457549 36553215 36756666	Property crime rate 3423.9 686.1 2033. 3321 692.9 1915 3175.2 676.9 1831. 3032.6 648.4 1784. 2940.3 646.8 1769.	Burglary rate 1 704.8 712 5 666.8 1 600.2 8 523.8	Larceny-theft rate	Motor vehicle theft rate
Reporte	ed crime in Color	ado			
Year 2004	Population 4601821 3918.5	Property crime rate 717.3 2679.5 521.6	Burglary rate	Larceny-theft rate	Motor vehicle theft rate

DataWrangler

Suggestions		rows: 408
		#
Delete rowc 8 10	1	Reported
Delete TOWS 0,10	2	
Delete empty rows	3	2004
	4	2005
Delete rows where Property_crime_rate	5	2006
is null	6	2007
	7	2008
Delete rows where Year is null	8	
Seriet	9	Reported
Script	10	
Split data repeatedly on newline into	11	2004
rows	12	2005
Solit data repeatedly on '.'	13	2006
Spint auto repeatedly on ;	14	2007

Wrangler: Interactive Visual Specification of Data Transformation Scripts. Sean Kandel et al., ACM CHI 2011.

3 prev next	
Year	Property_crime_rate
crime in Alabama	
	4029.3
	3900
	3937
	3974.9
	4081.9
crime in Alaska	
	3370.9
	3615
	3582
	3373.9

\$

Process

- 1. Construct graphics to address questions.
- 2. Inspect "answer" and ask new questions.
- Iterate... 3.

Analysis and Design Tamara Munzner, /isua 20 4). lization

Process

- 1. Construct graphics to address questions.
- 2. Inspect "answer" and ask new questions.
- 3. Iterate...

Process

- 1. Construct graphics to address questions.
- 2. Inspect "answer" and ask new questions.
- 3. Iterate...

→ -	Trends	→ Out	liers	→ Feat
		••	• ••	\mathbf{N}
→ 0	ne	→ Many		
→	Distribution	→ Dependent	cy → Correl	lation → Si
	.illin.	•-•	ممع	
	→ Extremes	_		
٠	Search			
		Target known	Target unkn	own
	Location known	•.•• Lookup	•. 🖸 Bro	owse
	Location unknown	< 💽 Docate	< 🧿 > Exp	olore

Process

- 1. Construct graphics to address questions.
- 2. Inspect "answer" and ask new questions.
- 3. Iterate...

	rends	→ Out	liers -> F
		••	• ••
→ 0	ne	→ Many	
→	Distribution	→ Dependent	cy → Correlation
		•-•	8 × × × × ×
	→ Extremes		
	_11		
و	Search		
		Target known	Target unknown
	Location known	•.•• Lookup	•.•• Browse
	Location unknown	< `⊙.> Locate	< O: Explore
\mathbf{i}	Query		
	→ Identify	→ Compare	→ Summarize
	 • • • 	+ +	

Analysis Example: Motion Pictures Data

Analysis Example: Motion Pictures Data

A sample of 3,201 movies collected in 2010.

- Title String (N)
- IMDB Rating Number (Q)
- Rotten Tomatoes Rating Number (Q)
 - String (N) Genre
 - Release Date Date (T)
 - US Gross Number (Q)
 - Worldwide Gross Number (Q)

Distribution of US Gross by Genre

Major Genre				
Action		0 0	0 0	O Q
Adventure				
Black Comedy			0	
Comedy			$\bigcirc \bigcirc $	$\infty \odot $
Documentary		0	00000)
Drama	0	0 0	\circ	
Horror	\bigcirc		0 0	000
Musical			0	
Romantic Comedy			0 0	00
Thriller/Suspense	0		\odot	00
Western			0	
		1,000	10,000	100,0

% Releases per Quarter per Genre

US Gross by Ratings

Audience vs. Critic Ratings

Rotten Tomatoes Rating

6.859: Interactive Data Visualization **Exploratory Data Analysis**

Arvind Satyanarayan

Download data for today's activity: www.yellkey.com/free

Process

- 1. Construct graphics to address questions.
- 2. Inspect "answer" and ask new questions.
- 3. Iterate...

Lessons

- \checkmark Check data quality and your assumptions.
- \checkmark Start with univariate summaries, then consider relationships between variables.

→	Trends	→ Out	liers	→	Featu
		••	• ••		\checkmark
→	One	→ Many			
	→ Distribution	→ Dependend	cy → Corr	elation	→ Sim
	.illin.	•-•	1 2 1	• •	
	→ Extremes				
		■ _			
•	Search				I
		Target known	Target unk	nown	, nu
	Location known	•.•• Lookup	•.•• B	rowse	ysis u
	Location unknown	<๋.⊙. Locate	< 💽 > E	xplore	
€	Query				u Bio
	→ Identify	y → Compare	→ Sumn	narize	
	• • • •	+ +			14).

Analysis Example: Antibiotic Effectiveness

Analysis Example: Antibiotic Effectiveness

Collected prior to 1951 Genus of Bacteria String (N) String (N) Species of Bacteria Antibiotic Applied String (N) Gram-Staining? Pos / Neg (N) Min. Inhibitory Con. (g) Number (Q)

Analysis Example: Antibiotic Effectiveness

Collected prior to 1951 Genus of Bacteria String (N) Species of Bacteria String (N) String (N) Antibiotic Applied Gram-Staining? Pos / Neg (N) Number (Q) Min. Inhibitory Con. (g)

Table 1—Burtin's Data						
		Antibiotic				
Bacteria	Penicillin	Streptomycin	Neomycin	Gram Staining		
Aerobacter aerogenes	870	1	1.6	negative		
Brucella abortus	1	2	0.02	negative		
Brucella anthracis	0.001	0.01	0.007	positive		
Diplococcus pneumoniae	0.005	11	10	positive		
Escherichia coli	100	0.4	0.1	negative		
Klebsiella pneumoniae	850	1.2	1	negative		
Mycobacterium tuberculosis	800	5	2	negative		
Proteus vulgaris	3	0.1	0.1	negative		
Pseudomonas aeruginosa	850	2	0.4	negative		
Salmonella (Eberthella) typhosa	1	0.4	0.008	negative		
Salmonella schottmuelleri	10	0.8	0.09	negative		
Staphylococcus albus	0.007	0.1	0.001	positive		
Staphylococcus aureus	0.03	0.03	0.001	positive		
Streptococcus fecalis	1	1	0.1	positive		
Streptococcus hemolyticus	0.001	14	10	positive		
Streptococcus viridans	0.005	10	40	positive		

What questions might we ask?

Collected prior to 1951 Genus of Bacteria String (N) Species of Bacteria String (N) String (N) Antibiotic Applied Pos / Neg (N) Gram-Staining? Number (Q) Min. Inhibitory Con. (g)

Table 1—Burtin's Data						
		Antibiotic				
Bacteria	Penicillin	Streptomycin	Neomycin	Gram Staining		
Aerobacter aerogenes	870	1	1.6	negative		
Brucella abortus	1	2	0.02	negative		
Brucella anthracis	0.001	0.01	0.007	positive		
Diplococcus pneumoniae	0.005	11	10	positive		
Escherichia coli	100	0.4	0.1	negative		
Klebsiella pneumoniae	850	1.2	1	negative		
Mycobacterium tuberculosis	800	5	2	negative		
Proteus vulgaris	3	0.1	0.1	negative		
Pseudomonas aeruginosa	850	2	0.4	negative		
Salmonella (Eberthella) typhosa	1	0.4	0.008	negative		
Salmonella schottmuelleri	10	0.8	0.09	negative		
Staphylococcus albus	0.007	0.1	0.001	positive		
Staphylococcus aureus	0.03	0.03	0.001	positive		
Streptococcus fecalis	1	1	0.1	positive		
Streptococcus hemolyticus	0.001	14	10	positive		
Streptococcus viridans	0.005	10	40	positive		

How do the drugs compare?

Bacteria

Aerobacter aerogenes Brucella abortus Bacillus anthracis Diplococcus pneumonia Escherichia coli Klebsiella pneumoniae Mycobacterium tubercul Proteus vulgaris Pseudomonas aeruginos Salmonella (Eberthella) t Salmonella schottmuelle Staphylococcus albus Staphylococcus aureus Streptococcus fecalis Streptococcus hemolytic Streptococcus viridans

Original graphic by Will Burtin, 1951.

	Penicillin	Antibiotic Streptomycin	Neomycin	Gram stain
	870	1	1.6	-
	1	2	0.02	
	0.001	0.01	0.007	+
е	0.005	11	10	+
	100	0.4	0.1	-
	850	1.2	1	-
losis	800	5	2	-
	3	0.1	0.1	-
sa	850	2	0.4	-
yphosa	1	0.4	0.008	-
ri	10	0.8	0.09	_
	0.007	0.1	0.001	+
	0.03	0.03	0.001	+
	1	1	0.1	+
cus	0.001	14	10	+
	0.005	10	40	+

Encodings **Radius:** 1 / log(MIC) Bar Color: Antibiotic **Background Color:** Gram Staining

How do the drugs compare?

Minimum Inhibitory Concentration (MIC)

X-Axis: Antibiotic | log(MIC)Y-Axis: Gram-Staining | SpeciesColor: Most Effective?

Streptomycin	Neomycin
0.01	0.007
14	10
11	10
10	40
0.1	0.001
0.03	0.001
1	0.1
2	0.02
0.4	0.008
0.1	0.1
0.8	0.09
0.4	0.1
5	2
1.2	1
2	0.4
1	1.6
0 0.001 0.01 0.1 1	10 0 0.001 0.01 0.1 1 1

Mike Bostock, Stanford CS448b (Winter 2009).

How do the drugs compare?

minimum inhibitory concentration of antibiotics

bowen li cs448b

Bowen Ţ. Stanford CS448b (Fall 20 09).

500

100

0.1 (µg/ml)

1

10

Streptomycin and Neomycin are more efficient broad-spectrum antibiotics than Penicilin.

Gram-negative bacteria only

Gram-positive bacteria only

• • • • . •

Penicilin is more efficient than either Streptomycin or Neomycin if the bacteria is known to be gram-positive.

Gram staining quickly identifies

bacteria as Gram-negative or

Gram-positive, which can be

used to find a more efficient

antibiotic and dosage.

Penicillin 0.001 0.001 0.005 0.005 | 800 850 870

Minimum Inhibitory Concentration (MIC)

Streptomycin

All bacteria

eptomycin and Neomycin are more efficient broad-spectrum antibiotics than Penicilin.

Gram-negative bacteria only

Minimum Inhibitory Concentration (MIC)

Penicillin

5.0 -

5 0.0

Streptomycin

Neomycin

ner & Lysen. American Scientist, 2009 Wai

Do the bacteria group by antibiotic resistance?

Not a streptococcus!
 (realized ~30 yrs later)

Really a streptococcus!
 (realized ~20 yrs later)

Do the bacteria group by resistance? Do different drugs correlate?

& Lysen. American Scientist, 2009 Wainer

Process

- 1. Construct graphics to address questions.
- 2. Inspect "answer" and ask new questions.
- 3. Iterate...

Lessons

- \checkmark Check data quality and your assumptions.
- \checkmark Start with univariate summaries, then consider relationships between variables.

Avoid premature fixation: balance data variation and design variation.

Is EDA/EVA fishing?

Is EDA/EVA Fishing?

Some statisticians have proposed that when we look for patterns in visualizations, we're doing a series of visual hypothesis tests.

Multiple comparisons problem: the more hypothesis tests, the greater the chance of a cpurious finding (since the Null Hypothesis Significant Test admits 5% false positives).

No, because there's not a clear separation between exploratory and confirmatory analysis.

Based on slides by Jessica Hullman

Is EDA/EVA Fishing?

Some statisticians have proposed that when we look for patterns in visualizations, we're doing a series of visual hypothesis tests.

Multiple comparisons problem: the more hypothesis tests, the greater the chance of a cpurious finding (since the Null Hypothesis Significant Test admits 5% false positives).

No, because there's not a clear separation between exploratory and confirmatory analysis.

Based on slides by Jessica Hullman

Is EDA/EVA Fishing?

Some statisticians have proposed that when we look for patterns in visualizations, we're doing a series of *visual hypothesis tests*.

Multiple comparisons problem: the more hypothesis tests, the greater the chance of a cpurious finding (since the Null Hypothesis Significant Test admits 5% false positives).

No, because there's not a clear separation between *exploratory* and *confirmatory* analysis.

Sort of if you use the same dataset to make hunches *and* then test them (i.e., you cannot collect more data). Try a hold out set (e.g., separate training vs. test data).

Based on slides by Jessica Hullman

